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Abstract

While intensification of precipitation extremes
has been attributed to anthropogenic climate
change using statistical analysis and physics-
based numerical models, understanding floods
in a climate context remains a grand challenge.
Meanwhile, an increasing volume of Earth sci-
ence data from climate simulations, remote sens-
ing, and Geographic Information System (GIS)
tools offers opportunity for data-driven insight
and action plans. Defining Machine Intelligence
(MI) broadly to include machine learning and net-
work science, here we develop a vision and use
preliminary results to showcase how scientific un-
derstanding of floods can be improved in a climate
context and translated to impacts with a focus on
Critical Lifeline Infrastructure Networks (CLIN).

1. Introduction

Flooding is one of costliest natural hazards in the United
States and globally, driving more insured losses than any
other catastrophe (Aerts et al., 2014). Flooding in the mid-
western United States during the spring of 2019 caused
more than $1.3 billion dollars in structural damage and
agricultural losses in Nebraska alone (Bacon, 2019). De-
spite these impacts, understanding of floods in a climate
context remains a major challenge, as does translating in-
sights to actionable information for adaptation (Sharma
et al., 2018). Climate-informed risk assessment frameworks
for floods must consider changes in attributes of precipi-
tation extremes, uncertainty in our understanding of flood
generation, exposure, and vulnerability. Risk management
requires a focus on development pathways, which should
consider principled approaches to flood hazards manage-
ment (including preventive measures, consequence manage-
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ment, and recovery), time-phased and flexible adaptation,
and longer-term mitigation (Rosner et al., 2014; Ganguly
et al., 2018).

Understanding the link between climate changes and
changes in flooding has been named as a grand challenge
for the hydrologic community (Sharma et al., 2018). Based
on emerging success stories across multiple sectors, a recent
climate action plan (Moss et al., 2019a;b) suggests broader
use of MI, including artificial and intelligence and citizen
science, for hazard assessment and climate risk management.
Techniques blending physics and data — physics-informed
machine learning, machine-learning informed physics, and
mixture of experts — have promise to combine the strengths
of domain knowledge and insight from big data.

2. A Vision for Flood Risk Management

Figure 1 outlines a vision for leveraging MI for the ad-
vancement of climate-informed flood risk management. A
risk management framework for floods under global change
needs to consider key challenges in changing weather pat-
terns, aging infrastructures and consequent vulnerabilities,
and evolving attributes of urbanization and exposure.

One challenge in predictive understanding of floods is esti-
mating statistics of hydrometeorological extremes, which
can translate to indices for risk-informed decision-making.
Hybrid approaches blending physics and data sciences have
shown value in extracting credible scientific insights from
Earth System Model (ESM) simulations and translating in-
sights to information relevant for adaptation (Ganguly et al.,
2014; Vandal et al., 2017). Gaps also exist in understand-
ing of the integrated climate-water system and the complex
physical processes that generate floods. Machine Learning
(ML) is being used estimate parameters of high-resolution
ESM processes, address fundamental gaps in process under-
standing, as well as post-process ESM outputs and compare
with observations to improve predictions and uncertainty
quantification (Schneider et al., 2017; Rasp et al., 2018;
Reichstein et al., 2019; Wang et al., 2015).

Improvements in predictive understanding of floods can be
measured through statistical metrics and the consequences
for impacted systems such as CLINs. For CLIN systems,
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Figure 1. Machine intelligence can be embedded within comprehensive flood risk management.

network science and engineering approaches have demon-
strated potential for robustness and recovery modeling, lead-
ing to enhanced resilience (Bhatia et al., 2015; Gao et al.,
2016). CLIN systems, in this context, could include in-
terdependent built systems such as communication, power,
transport, and water, as well as natural systems such as food
webs and ecological networks (Tessler et al., 2015).

3. Proof of Concept Results and Case Study

Figure 2 presents a proof of concept which illustrates the
value of MI (specifically, spatiotemporal data sciences, ma-
chine learning, and network science, blended with physics
and process understanding) for flood risk management under
climate change in the context of built infrastructures.

The climate case study (top left) extracts predictive insights
about extremes (return levels of precipitation) together with
uncertainty quantification from model simulations and re-
motely sensed observations. The water case study (top
right) examines the role of antecedent soil moisture in flood
generation, which may confound the relation between pre-
cipitation and floods. Specialized statistical tools, such as
extreme value theory, and machine learning approaches,
which can extract actionable insights from complex pro-
cesses and datasets, have shown value in genrating novel
science insights and translating to them to impacts.

The infrastructure resilience case (bottom) demonstrates
how compound weather hazards (in this case blizzard from
Nor’easters followed storm surge in the hurricane season)
can impact the recovery of CLIN systems such as Boston’s
Massachusetts Bay Transportation Authority (MBTA) mass
transit system. Here, we considered a case where the system
is subjected to successive disruptions without adequate time

for full recovery between the first disruption and consequent
events. Network science and engineering in this context
have demonstrated value to inform robustness and recovery
of networked assets and systems.
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Figure 2. Case study using machine intelligence to study hydro-
logic extremes and built network resilience.

4. Future Work

Future work needs to examine how integration of scien-
tific knowledge and data methods in physics-informed MI
may work in conjunction with developments such as citizen
science and networked Digital Earth to advance climate-
informed risk management.



Machine Intelligence for Flood Risk Management Under Climate Change

References

Aerts, J. C., Botzen, W. W., Emanuel, K., Lin, N., de Moel,
H., and Michel-Kerjan, E. O. Evaluating flood resilience
strategies for coastal megacities. Science, 344(6183):
473475, 2014.

Bacon, J. Midwest flooding could be costly: In nebraska,
tab is $1.3 billion and rising with waters. USA Today,
2019.

Bhatia, U., Kumar, D., Kodra, E., and Ganguly, A. R. Net-
work science based quantification of resilience demon-
strated on the indian railways network. PloS one, 10(11):
e0141890, 2015.

Ganguly, A., Kodra, E., Agrawal, A., Banerjee, A., Boriah,
S., Chatterjee, S., Chatterjee, S., Choudhary, A., Das, D.,
Faghmous, J., et al. Toward enhanced understanding and
projections of climate extremes using physics-guided data
mining techniques. Nonlinear Processes in Geophysics,
21(4):777-795, 2014.

Ganguly, A. R., Kodra, E., Bhatia, U., Warner, M. E.,
Duffy, K., Banerjee, A., and Ganguly, S. Data-
driven solutions. United National Association - United
Kingdom. Climate 2020: Degrees of devastation,
2018. URL https://www.climate2020.0rg.
uk/data-driven-solutions/.

Gao, J., Barzel, B., and Barabadsi, A.-L. Universal resilience
patterns in complex networks. Nature, 530(7590):307,
2016.

Moss, R., Avery, S., Baja, K., Burkett, M., William, S.,
Chischilly, A., Dell, J., Fleming, P., Geil, K., Jacobs, K.,
et al. Evaluating knowledge to support climate action: A

framework for sustained assessment. Weather, Climate,
and Society, (2019), 2019a.

Moss, R., Avery, S., Baja, K., Burkett, M., William, S.,
Chischilly, A., Dell, J., Fleming, P., Geil, K., Jacobs, K.,
et al. A framework for sustained climate assessment in
the united states. Bulletin of the American Meteorological
Society, (2019), 2019b.

Rasp, S., Pritchard, M. S., and Gentine, P. Deep learning
to represent subgrid processes in climate models. Pro-
ceedings of the National Academy of Sciences, 115(39):
9684-9689, 2018.

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M.,
Denzler, J., Carvalhais, N., et al. Deep learning and pro-
cess understanding for data-driven earth system science.
Nature, 566(7743):195, 2019.

Rosner, A., Vogel, R. M., and Kirshen, P. H. A risk-based
approach to flood management decisions in a nonstation-
ary world. Water Resources Research, 50(3):1928-1942,
2014.

Schneider, T., Lan, S., Stuart, A., and Teixeira, J. Earth
system modeling 2.0: A blueprint for models that learn
from observations and targeted high-resolution simula-
tions. Geophysical Research Letters, 44(24), 2017.

Sharma, A., Wasko, C., and Lettenmaier, D. P. If precipita-
tion extremes are increasing, why aren’t floods? Water
Resources Research, 54(11):8545-8551, 2018.

Tessler, Z., Vorosmarty, C. J., Grossberg, M., Gladkova, 1.,
Aizenman, H., Syvitski, J., and Foufoula-Georgiou, E.
Profiling risk and sustainability in coastal deltas of the
world. Science, 349(6248):638-643, 2015.

Vandal, T., Kodra, E., Ganguly, S., Michaelis, A., Nemani,
R., and Ganguly, A. R. Deepsd: Generating high res-
olution climate change projections through single im-
age super-resolution. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 1663-1672. ACM, 2017.

Wang, D., Gouhier, T. C., Menge, B. A., and Ganguly, A. R.
Intensification and spatial homogenization of coastal up-
welling under climate change. Nature, 518(7539):390,
2015.

Xie, M., Jean, N., Burke, M., Lobell, D., and Ermon, S.
Transfer learning from deep features for remote sensing
and poverty mapping. In Thirtieth AAAI Conference on
Artificial Intelligence, 2016.


https://www.climate2020.org.uk/data-driven-solutions/
https://www.climate2020.org.uk/data-driven-solutions/

