NeurIPS 2019 Workshop
Tackling Climate Change with Machine Learning


Announcements


Many in the ML community wish to take action on climate change, yet feel their skills are inapplicable. This workshop aims to show that in fact the opposite is true: while no silver bullet, ML can be an invaluable tool both in reducing greenhouse gas emissions and in helping society adapt to the effects of climate change. Climate change is a complex problem, for which action takes many forms - from designing smart electrical grids to tracking deforestation in satellite imagery. Many of these actions represent high-impact opportunities for real-world change, as well as being interesting problems for ML research.

Speakers

Jeff Dean (Google AI)
Carla Gomes (Cornell)
Felix Creutzig (MCC Berlin, TU Berlin)
Lester Mackey (Microsoft Research, Stanford)
additional speakers to be announced

About NeurIPS

NeurIPS (formerly written “NIPS”) is one of the premier conferences on machine learning, and includes a wide audience of researchers and practitioners in academia, industry, and related fields. It is possible to attend the workshop without either presenting at or attending the main NeurIPS conference.

Registration

Those interested in attending the “Tackling Climate Change with Machine Learning” workshop should register for the “Workshops” component of NeurIPS at https://neurips.cc/Register/view-registration. Registration for NeurIPS will be based on a lottery – entry to the lottery must be made between Sept. 6 and Sept. 25. We encourage all workshop participants to register for this lottery, regardless of whether they are submitting. A full refund is available until Nov. 28.

In addition, a limited number of tickets will be reserved for accepted submissions to the workshop. We will make these available to accepted authors who are not selected in the NeurIPS registration lottery.

About the workshop

Call For Submissions

We invite submissions of short papers using machine learning to address problems in climate mitigation, adaptation, or modeling, including but not limited to the following topics:

All machine learning techniques are welcome, from kernel methods to deep learning. Each submission should make clear why the application has (or could have) positive impacts regarding climate change. We highly encourage submissions which make their data publicly available. Accepted submissions will be invited to give poster presentations, of which some will be selected for spotlight talks.

The workshop does not record proceedings, and submissions are non-archival. Submission to this workshop does not preclude future publication. Previously published work may be submitted under certain circumstances (see the FAQ).

All submissions must be through the submission website. Submissions will be reviewed double-blind; do your best to anonymize your submission, and do not include identifying information for authors in the PDF. We encourage, but do not require, use of the NeurIPS style template (please do not use the “Accepted” format as it will deanonymize your submission).

We will be awarding $30K in cloud computing credits, sponsored by Microsoft AI for Earth, as prizes for top submissions. Winners will be announced at the workshop.

Please see the Tips for Submissions and FAQ, and contact climatechangeai.neurips2019@gmail.com with questions.

Submission tracks

There are two tracks for submissions. Submissions are limited to 3 pages for the Papers track, and 2 pages for the Proposals track, in PDF format (see examples here). References do not count towards this total. Supplementary appendices are allowed but will be read at the discretion of the reviewers. All submissions must explain why the proposed work has (or could have) positive impacts regarding climate change.

PAPERS track

Work that is in progress, published, and/or deployed

Submissions for the Papers track should describe projects relevant to climate change that involve machine learning. These may include (but are not limited to) academic research; deployed results from startups, industry, public institutions, etc.; and climate-relevant datasets.

Submissions should provide experimental or theoretical validation of the method presented, as well as specifying what gap the method fills. Algorithms need not be novel from a machine learning perspective if they are applied in a novel setting. Details of methodology need not be revealed if they are proprietary, though transparency is highly encouraged.

Submissions creating novel datasets are welcomed. Datasets should be designed to permit machine learning research (e.g. formatted with clear benchmarks for evaluation). In this case, baseline experimental results on the dataset are preferred, but not required.

PROPOSALS track

Detailed descriptions of ideas for future work

Submissions for the Proposals track should describe detailed ideas for how machine learning can be used to solve climate-relevant problems. While less constrained than the Papers track, Proposals will be subject to a very high standard of review. No results need to be demonstrated, but ideas should be justified as extensively as possible, including motivation for why the problem being solved is important in tackling climate change, discussion of why current methods are inadequate, and explanation of the proposed method.

Tips for submissions

Travel Grants

We are excited to announce limited travel grants, sponsored by Microsoft Research. Travel grant applications can be submitted at https://forms.gle/Aq8EcV2VLD13LUov5, and are due October 3.

We also encourage workshop participants to apply for NeurIPS 2019 travel grants and other grants (e.g. Google Conference and Travel Scholarships) for which they may be eligible. If you are aware of additional scholarships that may be relevant to workshop attendees, please contact the workshop organizers so we can make this information available.

Frequently Asked Questions

Q: How can I keep up to date on this kind of stuff?
A: Sign up for our mailing list! https://www.climatechange.ai/mailing_list.html

Q: I’m not in machine learning. Can I still submit?
A: Yes, absolutely! We welcome submissions from many fields. Do bear in mind, however, that the majority of attendees of the workshop will have a machine learning background; therefore, other fields should be introduced sufficiently to provide context for the work.

Q: What if my submission is accepted but I can’t attend the workshop?
A: You may ask someone else to present your work in your stead.

Q: Do I need to use LaTeX or the NeurIPS style files?
A: No, although we encourage it.

Q: It’s hard for me to fit my submission on 2 or 3 pages. What should I do?
A: Feel free to include appendices with additional material (these should be part of the same PDF file as the main submission). Do not, however, put essential material in an appendix, as it will be read at the discretion of the reviewers.

Q: What do I do if I need an earlier decision for visa reasons?
A: Contact us at climatechangeai.neurips2019@gmail.com and explain your situation and the date by which you require a decision and we will do our best to be accommodating.

Q: Can I send submissions directly by email?
A: No, please use the CMT website to make submissions.

Q: The submission website is asking for my name. Is this a problem for anonymization?
A: You should fill out your name and other info when asked on the submission website; CMT will keep your submission anonymous to reviewers.

Q: Do submissions for the Proposals track need to have experimental validation?
A: No, although some initial experiments or citation of published results would strengthen your submission.

Q: The submission website never sent me a confirmation email. Is this a problem?
A: No, the CMT system does not send automatic confirmation emails after a submission, though the submission should show up on the CMT page once submitted. If in any doubt regarding the submission process, please contact the organizers. Also please avoid making multiple submissions of the same article to CMT.

Q: Can I submit previously published work to this workshop?
A: If it was previously published in a non-ML venue, YES! If it was previously published in an ML venue, NO! If you are unsure, contact climatechangeai.neurips2019@gmail.com. This policy is as per the NeurIPS workshop guidelines: “Workshops are not a venue for work that has been previously published in other conferences on machine learning or related fields. Work that is presented at the main NeurIPS conference should not appear in a workshop, including as part of an invited talk… (Presenting work that has been published in other fields is, however, encouraged!)”

Q: Can I submit work to this workshop if I am also submitting to another NeurIPS 2019 workshop?
A: Yes. We cannot, however, guarantee that you will not be expected to present the material at a time that conflicts with the other workshop.

Organizers

David Rolnick (UPenn)
Priya Donti (CMU)
Lynn Kaack (ETH Zürich)
Alexandre Lacoste (Element AI)
Tegan Maharaj (Mila)
John Platt (Google AI)
Jennifer Chayes (Microsoft Research)
Yoshua Bengio (Mila)

Program Committee

Andrew Ross (Harvard)
Aneesh Rangnekar (RIT)
Ashesh Chattopadhyay (Rice)
Ashley Pilipiszyn (Stanford)
Bolong Cheng (SigOpt)
Christian Schroeder (Oxford)
Clement Duhart (MIT)
Dali Wang (Oak Ridge National Lab)
David Dao (ETH)
Di Wu (McGill)
Dimitrios Giannakis (Courant Institute, NYU)
Duncan Watson-Parris (Oxford)
Evan Sherwin (Stanford)
Femke van Geffen (FU Berlin)
Gege Wen (Stanford)
George Chen (CMU)
Greg Schivley (Carbon Impact Consulting)
Han Zou (UC Berkeley)
Hari Prasanna Das (UC Berkeley)
Hillary Scannell (University of Washington)
Joanna Slawinska (University of Wisconsin-Milwaukee)
Johan Mathe (Frog Labs)
Jonathan Binas (Mila, Montreal)
Jussi Gillberg (Aalto University)
Kalai Ramea (PARC)
Karthik Kashinath (Lawrence Berkeley National Lab)
Kate Duffy (Northeastern)
Kelly Kochanski (CU Boulder)
Kevin McCloskey (Google)
Kris Sankaran (Mila)
Lea Boche (EPRI)
Loubna Benabbou (Mohammadia School of Engineering, Mohammed V University)
Mahdi Jamei (Invenia Labs)
Max Callaghan (MCC Berlin)
Mayur Mudigonda (UC Berkeley)
Melrose Roderick (CMU)
Mohammad Mahdi Kamani (Penn State)
Natasha Jaques (MIT)
Neel Guha (CMU)
Niccolo Dalmasso (CMU)
Nikola Milojevic-Dupont (MCC Berlin)
Pedram Hassanzadeh (Rice)
Robin Dunn (CMU)
Sajad Haghanifar (University of Pittsburgh)
Sanam Mirzazad (EPRI)
Sandeep Manjanna (McGill)
Sasha Luccioni (Mila)
Sharon Zhou (Stanford)
Shubhankar Deshpande (CMU)
Sookyung Kim (Lawrence Livermore National Lab)
Soukayna Mouatadid (University of Toronto)
Surya Karthik Mukkavili (Mila)
Telmo Felgueira (IST)
Thomas Hornigold (Oxford)
Tianle Yuan (NASA)
Tom Beucler (Columbia & UCI)
Vikram Voleti (Mila, Montreal)
Volodymyr Kuleshov (Stanford)
Yang Song (Oak Ridge National Lab)
Ydo Wexler (Amperon)
Zhecheng Wang (Stanford)
Zhuangfang Yi (Development Seed)