BISCUIT: Building Intelligent System CUstomer Investment Tool

Hari Prasanna Das
University of California, Berkeley

Joint work with Ming Jin, Ruoxi Jia, Wei Feng, Costas Spanos
Design of smart buildings
Occupancy sensor selection problem

• Problem: which sensor to install to enable occupancy-based lighting?

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Cost</th>
<th>Precision</th>
<th>Computation level</th>
<th>Lighting compatible</th>
</tr>
</thead>
<tbody>
<tr>
<td>environmental sensor: CO₂, temperature, etc.</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>Yes</td>
</tr>
<tr>
<td>motion sensor: PIR</td>
<td>Medium</td>
<td>Medium</td>
<td>Low</td>
<td>Yes</td>
</tr>
<tr>
<td>camera sensor</td>
<td>High</td>
<td>High</td>
<td>Medium</td>
<td>No</td>
</tr>
</tbody>
</table>

• What sensors are available? What are the costs?
• What are the precision? Do they require computational infrastructure?
• Are they compatible? Can they be shared by other systems (e.g. HVAC)?
Smart building design lesson #1:

In addition to costs,

we should also consider performance and functional constraints.
Heating ventilation and air conditioning (HVAC) system retrofit evaluation

• Problem: cost-benefit analysis of HVAC system retrofit plans

<table>
<thead>
<tr>
<th>Candidate</th>
<th>Control</th>
<th>Computation level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic retrofit, no intelligent components</td>
<td>Basic control</td>
<td>Low</td>
</tr>
<tr>
<td>smart variable air volume (VAV) box</td>
<td>Demand-based control</td>
<td>Medium</td>
</tr>
<tr>
<td>smart HVAC system</td>
<td>Human-building interaction</td>
<td>High</td>
</tr>
</tbody>
</table>

• What is the annual cost of operation for the given building profile?
• Do they require additional computational infrastructure?
Smart building design lesson #2:

In addition to investment costs,

we should also consider available control strategies and operation cost.
“Knapsack problem” of smart buildings

• **Original knapsack:** which items should be chosen to maximize profits while not exceeding the weight limit?

• **Smart building version:** which smart building technologies should be invested to maximize user satisfaction given limited budget?
Challenges

• Large-scale: >100K variables

• Nonconvexity (discrete optimization)

• Human-centric designs (soft constraints)
BISCUIT: Building Intelligent System Customer Investment Tools

- Idea: Library + Optimization-based design space exploration

Library
- Sensor, HVAC, lighting, intelligent infrastructure, security, human building interaction

Simulation engine

User specification
- Cost, energy efficiency, comfort, indoor environmental quality, privacy, security, human building interactions

Building information

Retrofit plan

Building services
Functional-level abstraction

- **Library**: sensors, HVAC, lighting, intelligent infrastructure, etc.
- **Component**: properties and constraints

<table>
<thead>
<tr>
<th>Library</th>
<th>Items</th>
<th>Properties</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensors</td>
<td>Available sensor models</td>
<td>Sensing modalities (environmental parameters, sound, visual), functions (presence/occupancy/indoor position/identity detection), cost</td>
<td>User specifications (privacy, IEQ, etc.); compatibility with intelligent HVAC/lighting/infrastructure</td>
</tr>
<tr>
<td>HVAC</td>
<td>Intelligent/ traditional systems</td>
<td>Vendor, investment cost, maintenance cost, rate power, efficiency, lifespan, supported control strategies</td>
<td>User specifications (intelligence upgrade, safety), requirement on the existence of compatible sensors and intelligent infrastructures</td>
</tr>
<tr>
<td>Lighting</td>
<td>Intelligent/ traditional systems</td>
<td>Vendor, investment cost, maintenance cost, rate power, efficiency, lifespan, supported control strategies</td>
<td></td>
</tr>
<tr>
<td>Security</td>
<td>Available systems</td>
<td>Vendor, investment cost, subscription cost, lifespan</td>
<td></td>
</tr>
<tr>
<td>HBI</td>
<td>Available systems</td>
<td>Maintenance cost, lifespan, control strategies, efficiency</td>
<td></td>
</tr>
<tr>
<td>Infrastructure</td>
<td>Available packages</td>
<td>Vendor, cost, maintenance cost, lifespan</td>
<td>User specifications</td>
</tr>
</tbody>
</table>
Formulation of intelligent building design

\[
\begin{align*}
\text{min} & \quad \text{investment cost} + \text{annual operation cost} \\
\text{s.t.} & \quad (1) \text{ user specifications} \\
& \quad (2) \text{ technology constraints} \\
& \quad (3) \text{ operation constraints}
\end{align*}
\]

• Mixed integer linear program

• Optimization over both integer and continuous variables:
 • Investment decision (binary)
 • System control strategy (binary)
 • Operational variables (continuous)
Case study: medium-sized commercial building renovation

• Setup: a medium-sized building (40 rooms, 100 occupants) in California, USA

• RSMeans cost manual and market prices
Acknowledgement

• Collaborators

Ming Jin Ruoxi Jia Wei Feng Costas Spanos

SinBerBEST
Building Efficiency and Sustainability in the Tropics