BENCHMARKS FOR GRID FLEXIBILITY

PREDICTION: ENABLING PROGRESS AND MACHINE LEARNING APPLICATIONS

Diego Kiedanski, Lauren Kuntz, Daniel Kofman

April 10, 2020
MOTIVATION
MOTIVATION

- Massive deployment of renewable energy resources is needed
MOTIVATION

- Massive deployment of renewable energy resources is needed
- Most renewables are intermittent (solar, wind)
MOTIVATION

- Massive deployment of renewable energy resources is needed
- Most renewables are intermittent (solar, wind)
- Deploying renewables requires grid flexibility
MOTIVATION

- Massive deployment of renewable energy resources is needed
- Most renewables are intermittent (solar, wind)
- Deploying renewables requires grid flexibility
- Grid flexibility is hard to measure.
MOTIVATION

- Massive deployment of renewable energy resources is needed
- Most renewables are intermittent (solar, wind)
- Deploying renewables requires grid flexibility
- Grid flexibility is hard to measure.
- How should we implement more grid flexibility?
MOTIVATION

- Massive deployment of renewable energy resources is needed
- Most renewables are intermittent (solar, wind)
- Deploying renewables requires grid flexibility
- Grid flexibility is hard to measure.
- How should we implement more grid flexibility?
- A benchmark is needed!
DATASETS IN DEMAND RESPONSE
DATASETS IN DEMAND RESPONSE

- Mostly time-series of energy consumption only.
DATASETS IN DEMAND RESPONSE

- Mostly time-series of energy consumption only.
- Very useful to forecast energy consumption … ceteris paribus
DATASETS IN DEMAND RESPONSE

- Mostly time-series of energy consumption only.
- Very useful to forecast energy consumption … *ceteris paribus*
- Not sufficient to measure flexibility:
DATASETS IN DEMAND RESPONSE

- Mostly time-series of energy consumption only.
- Very useful to forecast energy consumption … ceteris paribus
- Not sufficient to measure flexibility:
 - Users of the dataset with too many degrees of freedom
DATASETS IN DEMAND RESPONSE

- Mostly time-series of energy consumption only.
- Very useful to forecast energy consumption … ceteris paribus
- Not sufficient to measure flexibility:
 - Users of the dataset with too many degrees of freedom
 - Reproducibility can not be guaranteed
BENCHMARK REQUIREMENTS
1. A model of how consumers respond to changes in price and environment (flexibility).
BENCHMARK REQUIREMENTS

1. A model of how consumers respond to changes in price and environment (flexibility).
2. A performance metric for flexibility
BENCHMARK REQUIREMENTS

1. A model of how consumers respond to changes in price and environment (flexibility).
2. A performance metric for flexibility
 - We propose: matched renewable generation with demand.
BENCHMARK REQUIREMENTS

1. A model of how consumers respond to changes in price and environment (flexibility).
2. A performance metric for flexibility
 - We propose: matched renewable generation with demand.
3. Extra requirements:
BENCHMARK REQUIREMENTS

1. A model of how consumers respond to changes in price and environment (flexibility).
2. A performance metric for flexibility
 - We propose: matched renewable generation with demand.
3. Extra requirements:
 - Energy generation and mix
BENCHMARK REQUIREMENTS

1. A model of how consumers respond to changes in price and environment (flexibility).
2. A performance metric for flexibility
 - We propose: matched renewable generation with demand.
3. Extra requirements:
 - Energy generation and mix
 - Power system specification
BENCHMARK REQUIREMENTS

1. A model of how consumers respond to changes in price and environment (flexibility).
2. A performance metric for flexibility
 - We propose: matched renewable generation with demand.
3. Extra requirements:
 - Energy generation and mix
 - Power system specification
 - A base load consumption for each player
BENCHMARKS CAN ENABLE AI: DEEP LEARNING

Example:
BENCHMARKS CAN ENABLE AI: DEEP LEARNING

Example:

- Collect large number of datasets
BENCHMARKS CAN ENABLE AI: DEEP LEARNING

Example:

- Collect large number of datasets
- Label data with the maximum flexibility achievable
BENCHMARKS CAN ENABLE AI: DEEP LEARNING

Example:

- Collect large number of datasets
- Label data with the maximum flexibility achievable
- Learn from the pairs (grid with consumers, maximum flexibility) the relevant features of Dataset
BENCHMARKS CAN ENABLE AI: DEEP LEARNING

Example:

- Collect large number of datasets
- Label data with the maximum flexibility achievable
- Learn from the pairs (grid with consumers, maximum flexibility) the relevant features of Dataset
- Use the learned model to predict flexibility in new grids
THE END

More details in the paper