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ABSTRACT

Recently, renewable energy is rapidly integrated into the power grid to prevent
climate change, and accurate forecasting of renewable generation becomes criti-
cal for reliable power system operation. However, existing forecasting algorithms
only focused on reducing forecasting errors without considering error compens-
ability by using a large-scale battery. In this paper, we propose a novel strat-
egy called error compensable forecasting. We switch the objective of forecast-
ing from reducing errors to making errors compensable by leveraging a battery.
Specifically, we propose a deep reinforcement learning based framework having
forecasting in the loop of control. Extensive simulations show that the proposed
one-hour ahead forecasting achieves zero error for more than 98% of time while
reducing the operational expenditure by up to 44%.

1 INTRODUCTION

The Paris Agreement has recently stressed the necessity of using renewable energy instead of fos-
sil fuels to prevent climate change. As a result, global penetration of renewable energy rapidly
increases, but renewable power outputs heavily depend on weather conditions such as clouds, tem-
perature, and humidity. This causes substantial uncertainties, which brings adverse effects on eco-
nomic benefit and the stability of power grids. Thus, accurate renewable energy forecasting tech-
niques are required to integrate the renewable energy into the power grids and ultimately prevent
climate change. Recently, deep learning based renewable generation forecasting techniques have
been proposed (Cardona et al., 2019; Mathe et al., 2019; Jeong & Kim, 2019) and show significantly
improved performances compared to conventional machine learning based schemes. However, fore-
casting always induces errors, and large-scale energy storages such as lithium-ion batteries are used
to compensate forecasting errors (Bae et al., 2016; Gholami et al., 2018; Bae et al., 2019). The basic
idea is such that over-forecasting errors are compensated by discharging energy from the battery
while under-forecasting errors are resolved by charging excessive generation into the battery.

Traditional forecasting methods commonly aimed to minimize the forecasting errors. They used the
mean squared error (MSE) as an objective function in training process. Since there is a squared term
in the MSE, training is processed without considering whether the errors are positive or negative.
However, reducing errors does not necessarily imply compensable errors. For example, suppose that
the battery is empty, i.e., discharging is not possible but charging battery is possible. Then, over-
forecasting is not allowed because the battery cannot compensate error by discharging. By contrast,
under-forecasting is compensable because excessive generation can be stored in the battery. For
the same reason, under-forecasting is not allowed when the battery is fully charged. Nevertheless,
existing forecasting algorithms do not consider whether the errors are positive or negative but just
reduce the distance between forecasting and real values. Consequently, none of the previous works
considered error compensability by using the battery.

In this regard, we propose a novel strategy called error compensable forecasting (ECF). We switch
the objective of forecasting from reducing errors to making compensable errors. The challenging
part of developing ECF lies in that the stored energy at current time is affected by the previous
forecasting result. Hence, time-coupling exists between forecasting and battery control, and fore-
casting should be in the loop of sequential decision making. We tackle this problem by leveraging
reinforcement learning (RL) that has interaction between an agent and the environment where ac-

1



Published as a conference paper at ICLR 2020

tions of the agent affect the subsequent data it receives (Sutton et al., 1998). In our framework, an
action is a continuous forecasted value, and it requires a continuous action space. To enable the
continuous control, we leverage the state-of-the-art deep reinforcement learning (DRL) algorithm
called proximal policy optimization (PPO), which is known to be simpler to implement than other
DRL algorithms with outstanding performance (Schulman et al., 2017). Our extensive simulations
with real solar and wind power generation data confirm that the proposed framework outperforms
the traditional forecasting and achieves zero error for more than 98% of time for one-hour ahead
forecasting when the maximum battery capacity is 0.5 p.u, i.e., a half of the installed generation
capacity.

2 METHODS

2.1 BATTERY OPERATION

In this section, we present a practical battery model for ECF applications. For simplicity we focus
on one-hour ahead forecasting because renewable energy providers can resubmit their bids one-
hour ahead of the operation hour in a renewable energy market (Bae et al., 2019). Since battery
degradation is known to be severe at both ends of the state-of-charge (SoC), i.e., either empty or
full, the stored energy denoted by Et at time slot t should be constrained by (Choi & Kim, 2016)

Emax · SoCmin ≤ Et ≤ Emax · SoCmax, (1)

where SoCmin and SoCmax denote the minimum and maximum SoC of the battery, and Emax de-
notes the maximum battery capacity. From (1), the charging and discharging power limitation at
time slot t, denoted by P̄ ct and P̄ dt , can be obtained as

P̄ ct = min

(
P cmax,

1

ηc
· Emax · SoCmax − Et

∆t

)
, (2a)

P̄ dt = min

(
P dmax, ηd ·

Et − Emax · SoCmin

∆t

)
, (2b)

where ∆t is the duration of time slot, and ηc, ηd are the charging and discharging efficiencies,
respectively, andP cmax, P dmax are the maximum charging power and discharging power of the battery,
respectively, which are inherently determined by the power conditioning system constraints.

Let xt be the real generation value in time slot t, and at be the forecasted value in the next time slot
t+ 1. When at is smaller than xt+1 (under-forecasting), excessive energy xt+1 − at is stored in the
battery to match the forecasted value, but it is limited to P̄ ct as in (2a). Likewise, when at is higher
than xt+1 (over-forecasting), energy deficit at − xt+1 is compensated by drawing energy from the
battery, up to P̄ dt as in (2b). Accordingly, in the next time slot t + 1, the charging and discharging
power of the battery, denoted by P ct+1 and P dt+1, are formulated as

P ct+1 = min
(
(xt+1 − at)+, P̄ ct

)
, (3a)

P dt+1 = min
(
(at − xt+1)+, P̄ dt

)
, (3b)

where (x)+ = max(x, 0). Accordingly, Et evolves in time as follows:

Et+1 = Et + ηcP
c
t+1∆t− 1

ηd
P dt+1∆t. (4)

2.2 ERROR COMPENSATION COST

We mainly consider three costs from battery degradation, energy transfer loss, and non-compensable
errors. First, degradation cost roughly proportional to the charging and discharging power if (1) is
satisfied (Han et al., 2014; Kim et al., 2016). Second, charging efficiency (ηc) and discharging
efficiency (ηd) are not perfect, which causes energy transfer loss. Thus, the battery cost at the next
time slot t+ 1, denoted by Bt+1, is the sum of these two costs:

Bt+1 = b
(
P ct+1 + P dt+1

)
∆t+ l

[
(1− ηc)P ct+1 +

(
1

ηd
− 1

)
P dt+1

]
∆t, (5)
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Figure 1: A framework of DRL-based error compensable forecasting.

where b is the degradation cost per unit energy, and l is the penalty for energy loss per unit energy.

Next, we consider the cost from non-conpensable errors. When excessive energy cannot be stored
in the battery, the power system operator need to curtail the output power, which causes energy
loss, and when energy deficit cannot be compensated by the battery, the power system operator
purchases power from a reserve market (Kim & Powell, 2011; Ryu et al., 2018). Thus, the cost from
non-compensable errors at the next time slot t+ 1, denoted by Nt+1, is given by:

Nt+1 = l
(
xt+1 − at − P ct+1

)+
∆t+ p

(
at − xt+1 − P dt+1

)+
∆t, (6)

where p is the power purchasing cost per unit energy.

We then formulate our problem as optimization as follows.

minimize lim
T→∞

E

[
T∑
t=0

γt (Bt+1 +Nt+1)

]
, (7)

subject to (2a), (2b), (3a), (3b), and (4),

variables {at}∞t=0 ,

where γ ∈ (0, 1) is a discounted factor that determines the importance of future costs. It is obvious
that the optimal solution is at = xt+1, ∀t, when error compensation is not needed. However, xt+1 is
unknown at time slot t, and forecasting is required to solve the problem (7). In general, ηc and ηd are
generally close to 1, and degradation cost is much less than the profit loss and the power purchasing
cost, which implies that b is much less than l and p (Kim et al., 2019), see Table 1.

2.3 DEEP REINFORCEMENT LEARNING BASED SOLUTION

In problem (7), time-coupling exists because of the equation (4). Hence, the forecasting in our
problem is essentially sequential decision making under uncertainty. In this regard, we consider RL
with a set of states S and a set of actions A. At time slot t, an agent takes an action at ∈ A at state
st ∈ S and goes to a next state st+1 ∈ S with a reward rt+1. The solution is determined by xt+1

and Et, but as xt+1 is unknown at time t, we use the observed past d values as in the time-series
forecasting. As a result, we set the state st = (xt−d+1, xt−d+2, · · · , xt, Et), the action at as the
forecasted value in the next time slot t+ 1, and the reward rt = −(Bt +Nt).

DRL combines the classic RL with the deep neural network (DNN), which is also suitable for prob-
lems considering continuous state and action space, which is the main interest of this paper. The
policy πθ(at|st) is generally captured by Gaussian distribution with the parameters θ. One network,
called actor, outputs its mean µθ(st) with variable standard deviations. Or, one can use a predeter-
mined small value of standard deviation σ to improve stability (Zimmer & Weng, 2019). The other
network, called critic, outputs the estimated value function Vθ(st) to estimate the value function
accurately. In practice, all parameters of non-output layers can be shared in actor and critic, so we
use one DNN to generate µθ(st) and Vθ(st). To train the DNN, we apply PPO, which is known to
be much simpler to implement than other DRL algorithms with outstanding performance, where the
details of the training process are elaborated in the (Schulman et al., 2017). The overall architecture
of the proposed DRL based ECF is shown in Figure 1.
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Table 1: Battery related parameters
Parameters ∆t ηc ηd SoCmin SoCmax P cmax/Emax P dmax/Emax b l p γ

Value 1 hour 0.9 0.9 0.1 0.9 1/3 1/3 $10/MWh $50/MWh $100/MWh 0.99

Table 2: Experiment results (solar)
Emax = 0.25 p.u. Emax = 0.5 p.u.

BF ECF BF ECF

MAPE 18.74% 10.08% 17.70% 0.13%
Score 0.729 0.848 0.765 0.990

Mean Cost $2593 $2260 $2430 $1455

Table 3: Experiment results (wind)
Emax = 0.25 p.u. Emax = 0.5 p.u.

BF ECF BF ECF

MAPE 6.16% 1.21% 4.85% 0.20%
Score 0.642 0.883 0.734 0.983

Mean Cost $2737 $1803 $2368 $1332

3 RESULTS

In this section, we evaluate the performance of the proposed ECF. We compare our models with the
baseline forecasting (BF) that determines at by training DNN with the MSE between xt+1. We use
two real-world open datasets, aggregated production of solar power and wind power across Belgium
from January 1st 2016 to December 31th 2019, released by Elia1. We normalize the data between
0 and 1 by the installed renewable generation capacity (3887MW for solar and 3796MW for wind)
and sample every 1 hour. We split the dataset into training set (50%, two years), validation set
(25%, one year), and test set (25%, one year) in chronological order. In solar power datasets, we
exclude the data during night (zero-value data). For the validation and testing phases in ECF, we
built a deterministic PPO defined in (Zimmer & Weng, 2019). We also normalize the capacity of the
battery by the installed renewable generation capacity to obtain per unit (p.u.) quantity. At time slot
t = 0, we set Et = 0.5 × Emax, i.e., the half stored energy, and Et for t ≥ 1 is determined by (4).
The battery related parameters are from (Kim & Powell, 2011; Ryu et al., 2018; Kim et al., 2019)
and summarized in Table 1.

We use a fully-connected multi-layer perceptron based architecture as it is one of the attractive
solutions for one-hour ahead forecasting problems (Bae et al., 2016; Gholami et al., 2018; Bae et al.,
2019) with a shorter training time than recurrent neural network (Goodfellow et al., 2016). We select
4 input neurons in BF case (where d = 4) and 5 in ECF case (to include Et), two hidden layers and
16 neurons per each layer based on the validation set.

We use the mean absolute percentage error (MAPE) to evaluate the performance of each technique.
Since the compensated real output is determined by charging and discharging the battery, the MAPE
in our case is defined as

MAPE =
100

|T |
∑
t∈T

∣∣∣∣∣
(
xt+1 − P ct+1 + P dt+1

)
− at(

xt+1 − P ct+1 + P dt+1

) ∣∣∣∣∣ [%], (8)

where T is a test dataset. Also, to evaluate error compensability, we evaluate the score, the ratio of
the time slots where the errors are completely compensated by battery, and the mean cost, the mean
value ofBt+Nt. Table 2 and Table 3 show the performances of the BF and ECF whenEmax is 0.25
p.u. and 0.5 p.u. for the solar and wind datasets, respectively. The proposed ECF far improves all the
performances compared to the BF. Furthermore, when Emax = 0.5 p.u., the improvements become
significant, e.g., the MAPE becomes near zero, and the score becomes 0.99 (solar) and 0.983 (wind),
which implies that ECF achieves zero error for more than 98% of time.

4 CONCLUSION

In this paper, we proposed a novel forecasting strategy called ECF for renewable energy where the
objective is switched from reducing errors to making compensable errors by using battery. The
proposed model shows significantly better performance than the traditional forecasting in the sense
of error compensability. Future research can be extended into multi-step ahead (such as day ahead)
forecasting algorithm with evaluating the economical impact such as day ahead bidding profit.

1http://www.elia.be/en/grid-data/power-generation
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