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Abstract

Wind energy is being adopted at an unprecedented rate. The locations of wind
energy sources, however, are largely undocumented and expensive to curate manu-
ally, which significantly impedes their integration into power systems. Towards
the goal of mapping global wind energy infrastructure, we develop deep learning
models to automatically localize wind turbines in satellite imagery. Using only
image-level supervision, we experiment with several different weakly supervised
convolutional neural networks to detect the presence and locations of wind turbines.
Our best model, which we call DeepWind, achieves an average precision of 0.866
on the test set. DeepWind demonstrates the potential of automated approaches for
identifying wind turbine locations using satellite imagery, ultimately assisting with
the management and adoption of wind energy worldwide.

1 Introduction

Decarbonization of the electricity sector and decreasing costs are accelerating the adoption of
renewable energy, with 50% of the worldwide capacity to be renewable by 2035 (1). Wind energy in
particular is growing at a rapid pace, with 591 GW of capacity deployed by 2018—a 60% increase in
5 years—and a 130% increase expected by 2035 (2). Knowing the location and type of installed wind
turbines is critical for a variety of stakeholders, such as: (i) wind developers to identify the best new
areas for deployments (3)); (ii) electricity grid operators to integrate renewable energy, to perform
real-time system operation, and to plan capacity expansion (4); (iii) utilities and city planners to plan
the management of local demand (5)); and (iv) policymakers to design and estimate the impact of
incentives and other contracting policies (6). Currently, there are more than 398,000 wind turbines
installed worldwide and only 42% are mapped with accurate locations (7;2). An automated approach
to localizing wind turbines would enable efficient identification of their locations and ultimately the
construction of a more complete, up-to-date, global database of wind energy infrastructure.

Convolutional neural networks (CNNs) have demonstrated success in a variety of image-based
localization tasks, including semantic segmentation (8)) and object detection (9;[10). Much of this
success, however, has been attributed to the use of fully supervised methods that require large datasets
with detailed annotations like bounding boxes and segmentation masks, which can be expensive
and time-consuming to collect. Satellite imagery offers an immense data source for image-based
localization tasks, but lacks this detailed annotation which is necessary for fully supervised model
development. To address this, we leverage advances in weakly supervised methods which use image-
level classification labels to localize objects, without the use of detailed annotation. These methods
have emerged as an effective alternative to their fully supervised counterparts, enabling advances in
various fields, including healthcare (11}/12) and energy (13).
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Figure 1: The weakly supervised localization models input a satellite image and output a predicted
response map which localizes the turbines in the image. A peak detection module identifies local
maxima in the response map and merges them based on proximity. The predicted locations in the
image can be converted to the geographic locations (latitude, longitude coordinates) of the turbines.

In this work, we develop DeepWind, a deep learning model to automatically localize wind turbines
from satellite imagery. We leverage satellite images annotated with image-level binary classification
labels from the U.S. Wind Turbine Database, a manually curated database containing more than 50,000
wind turbine locations in the U.S. (14). Without bounding boxes for fully supervised localization
models, we develop a variety of weakly supervised localization models to identify the locations of
wind turbines in satellite imagery. We evaluate each model on turbine location prediction, and our
best model, DeepWind, achieves an average precision of 0.866 on the test set.

2 Data

The dataset used to develop the models contains 42,255 positive images and 58,672 negative images
for a total of 100,927 images. We use latitude and longitude coordinates in the U.S. Wind Turbine
Database (USWTDB) for the positives, excluding those that were labeled with low location confidence
or did not have corresponding imagery (14). We have two negative sets, one sampled randomly across
the U.S. and the other containing visually similar objects to turbines (difficult negatives) with an
open source GeoVisual search tool (15). For all inputs, we obtain high resolution satellite imagery
(= 1.2m) of size 1500 x 1500. We split the dataset into training (97,825 images, 41,182 positives,
3,392 difficult negatives), validation (1,427 images, 432 positives, 500 difficult negatives) and test
(1,283 images, 249 positives, 500 difficult negatives). We do not match the true prevalence of wind
turbines in the real world as this would require very large dataset sizes to obtain a sufficient number
of positive examples. To evaluate the localization performance of the models, we manually annotate
all of the turbines in the validation and test sets with bounding boxes to be used as ground truth.

3 Models

Task The wind turbine detection task is a weakly supervised localization task, where the input is a
satellite image and the output is a set of coordinates indicating the locations of all turbines (if any) in
the image. Only image-level binary labels are available during training.

Localization Methods We experiment with several state-of-the-art weakly supervised localization
methods, including Class Activation Mappings (CAM (16))), Improved Gradient-weighted Class
Activation Mappings (GradCAM++ (17)), Soft Proposal Networks (SPN (18))), WILDCAT (19), and
Peak Response Maps (PRM (20)). Each method produces a single response map for an input image.
Hyperparameters specific to each method are set to the best values described in the original work.

Training Procedure We use an ImageNet-pretrained DenseNet-121 (21)) backbone architecture
for all localization models. We randomly crodﬁ each 1500 x 1500 image to 500 x 500, ensuring that
the turbine still remains in the image, and normalize images based on ImageNet mean and standard
deviation. We use an unweighted binary cross entropy loss to train all models for 5 epochs with a
batch size of 4, using an Adam optimizer with standard parameters and a fixed learning rate of 0.001.

Inference Procedure During inference, the 1500 x 1500 image is tiled into nine 500 x 500 images.
The network outputs a probability for each input image using a sigmoid nonlinearity, and the

2This cropping is performed for data augmentation and for GPU memory constraints.



Localization Counting
Model | AP F1 | MAE RMSE

CAM | 0.738 0.799 | 0.242 0.744
Grad-CAM++ | 0.830 0.848 | 0.211  0.672
SPN | 0.875 0911 | 0.156 0.573
WILDCAT | 0.919 0.941 | 0.095 0.396
PRM | 0916 0.945 | 0.101 0.487

Table 1: Localization and counting performances of all models on the validation set.

classification of the input image is determined by the threshold at which the model achieved the
highest classification F1-score on the validation set. The models additionally produce a 15 x 15
response map for each of the 500 x 500 tiles.

To obtain the predicted wind turbine locations for the 1500 x 1500 image, we first upscale the
response map of every input tile to 500 x 500 using bilinear interpolation, and then normalize the
upscaled response map so that all values lie between 0 and 1. Each of the response maps are then
concatenated to produce a full 1500 x 1500 response map over the whole image. The response map
is used to produce the turbine locations through peak detection, consisting of the following steps.
We first use a local max finding algorithm (22)) to identify the predicted turbine locations and their
confidence values, determined using the values of the response map at each location. Then, we merge
any location predictions that occur within the same region defined by the upsampling ratio between
the 15 x 15 and 500 x 500 the response maps under bilinear interpolation (34 pixels). The merging
process consists of identifying the connected components in the response map and then computing
the center of mass within each connected component. Finally, the predicted locations for a 500 x 500
tile are dropped the tile is classified as negative. These predicted locations can be converted to latitude
and longitude coordinates (see Figure [I|for a simplified visual explanation).

4 Results

We evaluate each of the weakly supervised model variants on the validation set. We measure
localization performance using an extension of the pointing with prediction metric (18) to the
multiple predicted object locations setting. We also compute a precision-recall curve, but instead of
checking whether the maximum response lies within any of the ground truth bounding boxes, we
match each predicted response to the bounding boxes as done in standard object detection. We use
average precision (AP) to summarize the localization performance of each model, and report the
F1-score at the threshold which led to the highest F1-score on the validation set.

Counting wind turbines is also an important task for many downstream analyses, e.g. computing
aggregate wind power out from a region. To measure this, we use standard metrics from crowd
counting literature (23 24)), namely mean absolute error (MAE) and root mean squared error (RMSE)
between the number of ground truth bounding boxes and number of predicted locations at the optimal
threshold.

WILDCAT and PRM demonstrate the best localization performance on the validation set (Table 1).
CAM demonstrated the lowest localization performance followed by Grad-CAM++ and SPN. We
identify WILDCAT as the best performing weakly supervised model, outperforming the others on
localization and counting, and evaluate this model—DeepWind—on the test set. On localization,
DeepWind achieves an AP of 0.866 and an F1-score of 0.919 (precision=0.920, recall=0.917). On
counting, DeepWind achieves an MAE of 0.076 and an RMSE of 0.306.

5 Conclusion

We develop deep learning models to localize wind turbines in satellite imagery using a large dataset
of over 100,000 images. We explore a variety of weakly supervised localization techniques and find
that the best model, which we call DeepWind, achieves an average precision of 0.866 on the test set
with image-level supervision alone. In future work, we plan to construct a global database of wind
turbine locations and make it freely accessible to the public. We hope that our work can encourage
the development and adoption of wind energy and demonstrate the potential for machine learning to
tackle challenging problems relevant to climate change (25).
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