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Wildfires are Getting More Frequent Over the Years
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Prescribed Burns to Control Wildfires

Prescribed burns most effective way to
manage forests in the US

e However, burning large amounts of built-
up fuel may negatively impact air quality

. All smoke is not the same. How can we tell the
difference between smoke?

https://www.swgafarmcredit.com/prescribed-burning/



Prescribed Burns to Control Wildfires

Prescribed burns most effective way to
manage forests in the US

e However, burning large amounts of built-
up fuel may negatively impact air quality

. All smoke is not the same. How can we tell the
difference between smoke?

Our goal: % L s
To help forest managers assess impact of prescribed " https://www.swgafarmcredit.com/prescribed-burning/

burns on air quality.




Data Collection of Ground and Air Smoke Samples
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Chemical Fingerprinting to Identify
Chemical Compounds in Smoke Samples

Chemical fingerprint analysis to
obtain:

. (GC) of
smoke sample

. (MS) of each
compound.

2nd Dimension Retention Time (s)
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Chemical Fingerprinting to Identify
Chemical Compounds in Smoke Samples

Chemical fingerprint analysis to
obtain:

. (GC) of
smoke sample

. (MS) of each
compound.
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Chemical Fingerprinting to Identify
Chemical Compounds in Smoke Samples

Chemical fingerprint analysis to
obtain:

. (GC) of
smoke sample

. (MS) of each
compound.

Each smoke sample is a

2nd Dimension Retention Time (s)
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(weighted set):

S = {(Xl: le)' e (Xm’ me)}

* X; € RP is mass spectrum (p ~ 500, m ~ 1000);
* the weights wy. represent amount of each compound
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Comparing Distributions of High-dimensional Data

Each smoke sample is a distribution over high-
dimensional data (MS of compounds), x; € R>% :

S = {(X1: le)' e (Xm’ me)}

* How to compare such distributions
* How to relate differences to chemical compounds



Comparing Distributions of High-dimensional Data

Each smoke sample is a distribution over high-
dimensional data (MS of compounds), x; € R>% :

S = {(X1: le)' e (Xm’ me)}

* How to compare such distributions
* How to relate differences to chemical compounds

Our goal is to define a scientifically
between smoke samples
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Construct Codebook of
Compound “Words" that Reflects Data Structure
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by spectral clustering and connectivity analysis
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A Metric between Smoke Samples
Should Account for Data Geometry

Smoke samples can be represented as
over the K compound “words”.

(b)
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A Metric between Smoke Samples
Should Account for Data Geometry

Smoke samples can be represented as
over the K compound “words”.

Histograms as

However, this arrangement does not reflect
data geometry/interbin relationship
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Our Proposed Metric Is
Interpretable and Reflects Data Geometry

Using :
X P(x) = (‘/h(x)ﬂ/)z(x); ---»‘/JD(X)) e RP

In this embedding (red circle), Euclidean
distances reflect connectivity.

(b)
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Our Proposed Metric Is
Interpretable and Reflects Data Geometry

Using :
X P(x) = (‘/h(x)ﬂ/)z(x); ---:¢D(X)) e RP

In this embedding (red circle), Euclidean
distances reflect connectivity.

(b)

This induces a distance between smoke
samples, or their histogram representations:

D(S:.§;) = |2 (fi — 9 - cil| Lo
with {c;}i-, being the K words (e.g. 4, B, C). .BO L. e
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Our Proposed Metric Is
Interpretable and Reflects Data Geometry

Using :
X P(x) = (¢1(X)J/)2(X), ---:¢D(X)) e RP

In this embedding (red circle), Euclidean
distances reflect connectivity.

(b)

This induces a distance between smoke
samples, or their histogram representations:

D(Su.8) = |21 (fi — 90 - il (-
with {c;}/=, being the K words (e.g. 4,B,C). | & " "

Our proposed metric:

* reflects data geometry
* s interpretable thanks to the codebook
* can serve as input to kernel ML algorithms 16



Our Method Differentiates Between Smoke Sample!
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Interpretable Results Help
Develop Forest Management Plans
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Interpretable results can help forest managers T T R S
design prescribed burns that minimize negative diffusion coordinate 1
air quality impact
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