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Wildfires are Getting More Frequent Over the Years

https://modis.gsfc.nasa.gov/

Larger and more frequent wildfires due to climate change 
and other factors (fire suppression, droughts etc.)

According to CAL FIRE, in 2020 there have been 9,177 
events with 4,194,148 acres burned. [https://www.fire.ca.gov/incidents/2020/]

https://www.nifc.gov/fireInfo/fireInfo_stats_totalFires.html 

Here graph of increasing amount of acres burnt
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Prescribed Burns to Control Wildfires

• Prescribed burns most effective way to 
manage forests in the US

• However, burning large amounts of built-
up fuel may negatively impact air quality

• All smoke is not the same. How can we tell the 
difference between smoke?

https://www.swgafarmcredit.com/prescribed-burning/
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Prescribed Burns to Control Wildfires

• Prescribed burns most effective way to 
manage forests in the US

• However, burning large amounts of built-
up fuel may negatively impact air quality

• All smoke is not the same. How can we tell the 
difference between smoke?

Our goal:
To help forest managers assess impact of prescribed 
burns on air quality. 

https://www.swgafarmcredit.com/prescribed-burning/
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Data Collection of Ground and Air Smoke Samples

Our CMU Center for Atmospheric Particles 
Studies (CAPS) team collected 54 smoke samples 
at Blodgett Forest Research Station (BFRS):

• Ground: 33 smoke samples

• Air: 21 smoke samples collected 
at ∼100 m altitude

Courtesy of Coty Jen
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Chemical Fingerprinting to Identify 
Chemical Compounds in Smoke Samples
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Chemical fingerprint analysis to 
obtain:

• gas chromatogram (GC) of  
smoke sample 

• mass spectrum (MS) of each 
compound.
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Chemical fingerprint analysis to 
obtain:

• gas chromatogram (GC) of  
smoke sample 

• mass spectrum (MS) of each 
compound.

Each smoke sample is a distribution over compounds (weighted set):

𝑆 = 𝐱1, 𝑤𝐱1 , … , 𝐱𝑚, 𝑤𝐱𝑚

• 𝐱𝑖 ∈ ℝ
𝑝 is mass spectrum (𝑝 ∼ 500, 𝑚 ∼ 1000); 

• the weights 𝑤𝐱𝑖 represent amount of each compound 8



Comparing Distributions of High-dimensional Data

Each smoke sample is a distribution over high-
dimensional data (MS of compounds), 𝐱𝑖 ∈ ℝ

500 :

𝑆 = 𝐱1, 𝑤𝐱1 , … , 𝐱𝑚, 𝑤𝐱𝑚

Statistical challenge:
• How to compare such distributions
• How to relate differences to chemical compounds
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Comparing Distributions of High-dimensional Data

Each smoke sample is a distribution over high-
dimensional data (MS of compounds), 𝐱𝑖 ∈ ℝ

500 :

𝑆 = 𝐱1, 𝑤𝐱1 , … , 𝐱𝑚, 𝑤𝐱𝑚

Statistical challenge:
• How to compare such distributions
• How to relate differences to chemical compounds

In brief:
Our goal is to define a scientifically interpretable 
metric between smoke samples
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Construct Codebook of 
Compound “Words” that Reflects Data Structure 

Smoke sample as distribution over high-dimensional data:

𝑆 = 𝐱1, 𝑤𝐱1 , … , 𝐱𝑚, 𝑤𝐱𝑚

• Data are high-dimensional but have sparse structure

• Construct a codebook of K compound “words”
by spectral clustering and connectivity analysis
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A Metric between Smoke Samples 
Should Account for Data Geometry

Smoke samples can be represented as 
histograms over the K compound “words”.
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A Metric between Smoke Samples 
Should Account for Data Geometry

Smoke samples can be represented as 
histograms over the K compound “words”.

Histograms as points in the simplex of K 
vertices 

However, this arrangement does not reflect 
data geometry/interbin relationship
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Our Proposed Metric Is 
Interpretable and Reflects Data Geometry

Using diffusion map:

𝐱 ↦ Ψ 𝐱 = 𝜓1 𝐱 ,𝜓2 𝐱 ,… , 𝜓𝐷 𝐱 ∈ ℝ𝐷

In this embedding (red circle), Euclidean 
distances reflect connectivity.
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Our Proposed Metric Is 
Interpretable and Reflects Data Geometry

Using diffusion map:

𝐱 ↦ Ψ 𝐱 = 𝜓1 𝐱 ,𝜓2 𝐱 ,… , 𝜓𝐷 𝐱 ∈ ℝ𝐷

In this embedding (red circle), Euclidean 
distances reflect connectivity.

This induces a distance between smoke 
samples, or their histogram representations:

𝒟 𝑆𝑖 , 𝑆𝑗 = ∑𝑖=1
𝐾 𝑓𝑖 − 𝑔𝑖 ⋅ 𝑐𝑖

with 𝑐𝑖 𝑖=1
𝐾 being the 𝐾 words (e.g. 𝐴, 𝐵, 𝐶). 
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Our Proposed Metric Is 
Interpretable and Reflects Data Geometry

Using diffusion map:

𝐱 ↦ Ψ 𝐱 = 𝜓1 𝐱 ,𝜓2 𝐱 ,… , 𝜓𝐷 𝐱 ∈ ℝ𝐷

In this embedding (red circle), Euclidean 
distances reflect connectivity.

This induces a distance between smoke 
samples, or their histogram representations:

𝒟 𝑆𝑖 , 𝑆𝑗 = ∑𝑖=1
𝐾 𝑓𝑖 − 𝑔𝑖 ⋅ 𝑐𝑖

with 𝑐𝑖 𝑖=1
𝐾 being the 𝐾 words (e.g. 𝐴, 𝐵, 𝐶). 

Our proposed metric: 
• reflects data geometry
• is interpretable thanks to the codebook
• can serve as input to kernel ML algorithms 16



Our Method Differentiates Between Smoke Sample! 
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• Can relate differences back to compound space 
for scientific interpretability

• Interpretable results can help forest managers 
design prescribed burns that minimize negative 
air quality impact

Interpretable Results Help 
Develop Forest Management Plans 
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