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Abstract

New particle formation (NPF) and growth in the atmosphere affects climate,
weather, air quality, and human health. It is the first step of the complex pro-
cess leading to cloud condensation nuclei (CCN) formation. Even though there is
a wealth of observations from field measurements (in forests, high-altitude, polar
regions, coastal and urban sites, aircraft campaigns), as well as laboratory studies
of multi-component nucleation (including the CLOUD chamber at CERN), and
improved nucleation theories, the NPF parameterisations in regional and global
models are lacking. These deficiencies make the impacts of aerosols one of the
highest sources of uncertainty in global climate change modelling, and associated
impacts on weather and human health. We propose to use Machine Learning
methods to overcome the challenges in modelling aerosol nucleation and growth,
by ingesting the data from the multitude of available sources to create a single
parameterisation applicable throughout the modelled atmosphere (troposphere
and stratosphere at all latitudes) that efficiently encompasses all input ambient
conditions and concentrations of relevant species.

1 Introduction

Clouds and aerosols continue to contribute the largest uncertainty to estimates and interpretations
of the Earth’s changing energy budget [26]. Atmospheric aerosols have direct and indirect effects
on Earth’s climate and impacts on public health [10]. Aerosols originate from several natural and
anthropogenic sources. New particle formation (NPF), the gas-to-particle conversion of atmospheric
vapours, is a major source of secondary aerosols that can act as cloud condensation nuclei (CCN) and
further affect the climate [25]. NPF has been observed in boreal forests, coastal, agricultural, and
urban areas, including polluted megacities [16, 17, 15, 6]. NPF in the atmosphere profoundly affects
climate, weather, air quality, and human health. It is the first step of the complex process leading
to cloud condensation nuclei (CCN) formation. It is estimated that about 40–70% of CCN globally
originate from NPF [20, 30].

Even though there is a wealth of observations from field measurements (in forests, high-altitude,
polar regions, coastal and urban sites, aircraft campaigns) [2, 9, 1, 3], as well as laboratory studies of
multi-component nucleation (including the CLOUD chamber at CERN) [11, 12, 19], and improved
nucleation theories, there is still limited understanding and the NPF parameterisations in regional and
global models of the atmosphere are lacking. These deficiencies make the impacts of aerosols the
highest source of uncertainty in modelling global climate change (IPCC), and associated impacts
on weather and human health. Understanding NPF is imperative to reduce uncertainties in climate
projections and to tackle urban air quality problems.
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In large-scale models of the atmosphere, which consider aerosol dynamics to project climate change, it
is necessary to use parameterised nucleation rates for computational efficiency. Presently, atmospheric
models rely on simple parameterisations that are typically polynomial fits to the dependency of
measured NPF rates as a function of vapour concentration (and airborne ions) and are only valid
for the environments and conditions that match each observation site [4]. To date, measurements
contribute to disparate parameterisations with limited spatial applicability, even though they relate
to the same physical processes. More detailed theoretical models including additional species
(e.g. nano-Köhler theory [14]) were also shown to have limitations and are too computationally
expensive to be incorporated into high-resolution models of the atmosphere and climate. A consistent
parameterisation in the scope of atmospheric modelling, with predictive capacity and computational
efficiency, has so far proven to be elusive. The introduction of machine learning methods in this
field is limited to using random forest regression of atmospheric model data to a-posteriori derive
measured CCN [22], and automating the manual process of observed event identification based only
on particle size distributions [8], with no inference or additional insights.

We propose to instead use state-of-the-art data science methods to combine all available measure-
ments of NPF and growth, and associated (vapour concentrations, presence of ions, meteorological
conditions) from the multitide of souces (Sec. 2) into a single hyper-parameter model that can provide
consistent (at all altitudes and environments/latitudes) and efficient (once trained, the computational
load of inference permits to be incorporated in GCMs) NPF simulation. Machine Learning methods
can overcome the challenges in simulating aerosol nucleation and growth by ingesting the data
from the multitude of available sources to create a single parameterisation applicable throughout the
atmosphere (troposphere and stratosphere) that efficiently encompasses all ambient conditions and
concentrations of relevant species. At the same time, we can gain insight into the physical processes
undeprinning NPF and growth and the complex interaction of the different components. Such insights
can drive further research, e.g., by guiding future observation campaigns.

2 Data Aggregation

Measurement campaigns of NPF and growth collocated with ambient conditions measurements in-
clude in situ ground station, tower, and aircraft observations. Additional multi-component nucleation
measurement data are available from chamber experiments: (i) In situ condensation particle counters
(CPCs) for 22 ground station locations from the EBAS [28] database over the years 1972–2009. (ii)
IAGOS CARIBIC detailed and extensive measurements during long distance flights deploying a mod-
ified airfreight container with automated scientific apparatus. Using a passenger Airbus A340-600
from Lufthansa in total more than 550 flights are succesfully completed. (iii) The NASA Atmospheric
Tomography Missions (ATom) deploying an extensive gas and aerosol payload on the NASA DC-8
aircraft for systematic, global-scale sampling of the atmosphere, profiling continuously from 0.2
to 12 km altitude in all 4 seasons over a 4-year period. (iv) The Aerosol, Cloud, Precipitation, and
Radiation Interactions and Dynamics of Convective Cloud Systems (ACRIDICON) dataset by the
DLR High Altitude and Long Range Aircraft (HALO). (v) Chamber measurements, in particular the
CERN CLOUD experiment.

3 Machine Learning Application

In the following, we propose two pathways for globally analysing the disparate sources of data
described in Sec. 2. While not necessarily disjoint, the first is focused on obtaining accurate models
that can be integrated in general circulation models (GCMs) in a black-box fashion, facilitating future
climate predictions and reducing uncertainty. In contrast, the second is oriented towards discovering
insights of the underlying physical process that can drive future observation campaigns and enhance
the understanding of the process by domain experts.

Global Parameterisation for NPF from ambient conditions and species concentrations. Current
approaches result in disparate NPF parameterisations with specific applicability in terms of initial
conditions [4]. In contrast, we propose the adoption of machine learning approaches to create a
hyperparametrization of new particle formation and growth applicable throughout the atmosphere
(from lower troposphere to higher levels of the stratosphere), that is accurate outside the current
limits of the input data span of current parametrizations. The speedy test-time evaluation of machine
learning models can lead to computationally efficient techniques that can be readily integrated in
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GCMs for multi-decadal simulations. To do so, data will be ingested from multiple data sources (Sec.
2), with each source covering specific portions of the problem phase space, whilst describing the
same underlying physical process.

The above problem can be considered in the context of supervised learning, for example by con-
sidering a classification problem with NPF being a binary target variable, or a regression problem
with a goal of predicting particle formation and growth. Deep learning methods [18] for supervised
learning have proven successful in a multitude of scientific and engineering tasks, and can be therefore
evaluated in this context. Such pre-trained models (e.g., convolutional / recurrent neural network
architectures) can then be incorporated straight-forwardly into GCMs. In the context of transfer learn-
ing [24, 27], domain adaptation techniques (e.g., fine-tuning) can be utilized to transfer knowledge
between various data domains, that is to compensate for covariate shifts between measurements in
different conditions (e.g., between chamber experiments and in situ ground station measurements). It
is noted that while accuracy is the primary metric to optimize for in this setting, interpretability and
explainability is crucial for developing further intuition into the physical processeses underlying NPF.
To this end, methods that attempt to explain the decision making carried out by Deep Networks can
be employed [21, 5]. However, interpretability is still very much an open problem in deep learning,
and alternative approaches can be explored as discussed in what follows.

Discovering insights to better process understanding. While building accurate global machine
learning models is crucial for reducing the uncertainty in climate projections, discovering further
insights regarding the new particle formation process can improve the understanding of the process,
and can further guide future observation campaigns. In this light, we propose to help domain
scientists by identifying interactions (interdependencies) between nucleating species (e.g., H2SO4,
volatile organic compounds, HOMs) and ambient conditions (e.g., temperature, humidity), to gain
further insight into the new particle formation process, and disentangle the factors that contribute
to particle formation. Methods based on tensor decomposition [13] can be evaluated either in an
unsupervised manner, to capture the principal modes of variation of the data along with the structure
of the underlying interactions in a core tensor, as well as in a supervised learning context [23], where
high-order interactions and multiplicative interactions [7] can be captured quickly, often in linear
time. Such techniques consist of multi-linear generalizations of linear algorithms, and therefore
preserve interpretability while increasing the model capacity. Finally, tree-based methods such as
random forests, and the recently proposed Neural-backed Decision trees [29], have been shown to
provide similar performance to state-of-the-art deep learning methods, while providing a detailed
breakdown of the decision rules that lead to a predictive result. This family of methods can provide
detailed insights on the interdependencies of species concentrations as well as the effect of ambient
conditions on phenomena related to NPF.

4 Conclusions

Using Machine Learning methods can overcome the long-standing challenges in understanding
and simulating aerosol nucleation and growth by ingesting the data from diverse sources into a
unified, global, multi-component parameterisation, valid throughout the atmosphere. This in turn
will decrease the largest uncertainty in climate projections and provide a tool to effectively tackle air
quality problems caused by urbanisation and population growth.
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