A simplified machine learning based wildfire ignition model from insurance perspective (Papers Track)

Yaling Liu (OurKettle Inc); Son Le (OurKettle Inc.); Yufei Zou (Our Kettle, Inc.); mojtaba Sadgedhi (OurKettle Inc.); Yang Chen (University of California, Irvine); Niels Andela (BeZero Carbon); Pierre Gentine (Columbia University)

Paper PDF Cite


In the context of climate change, wildfires are becoming more frequent, intense, and prolonged in the western US, particularly in California. Wildfires cause catastrophic socio-economic losses and are projected to worsen in the near future. Inaccurate estimates of fire risk put further pressure on wildfire (re)insurance and cause many homes to lose wildfire insurance coverage. Efficient and effective prediction of fire ignition is one step towards better fire risk assessment. Here we present a simplified machine learning-based fire ignition model at yearly scale that is well suited to the use case of one-year term wildfire (re)insurance. Our model yields a recall, precision, and the area under the precision-recall curve of 0.69, 0.86 and 0.81, respectively, for California, and significantly higher values of 0.82, 0.90 and 0.90, respectively, for the populated area, indicating its good performance. In addition, our model feature analysis reveals that power line density, enhanced vegetation index (EVI), vegetation optical depth (VOD), and distance to the wildland-urban interface stand out as the most important features determining ignitions. The framework of this simplified ignition model could easily be applied to other regions or genesis of other perils like hurricane, and it paves the road to a broader and more affordable safety net for homeowners.