Deep ensembles to improve uncertainty quantification of statistical downscaling models under climate change conditions (Papers Track)

Jose González-Abad (Instituto de Fı́sica de Cantabria (IFCA), CSIC-Universidad de Cantabria); Jorge Baño-Medina (Institute of Physics of Cantabria)

Paper PDF Cite
Uncertainty Quantification & Robustness Climate Science & Modeling

Abstract

Recently, deep learning has emerged as a promising tool for statistical downscaling, the set of methods for generating high-resolution climate fields from coarse low-resolution variables. Nevertheless, their ability to generalize to climate change conditions remains questionable, mainly due to the stationarity assumption. We propose deep ensembles as a simple method to improve the uncertainty quantification of statistical downscaling models. By better capturing uncertainty, statistical downscaling models allow for superior planning against extreme weather events, a source of various negative social and economic impacts. Since no observational future data exists, we rely on a pseudo reality experiment to assess the suitability of deep ensembles for quantifying the uncertainty of climate change projections. Deep ensembles allow for a better risk assessment, highly demanded by sectoral applications to tackle climate change.