Global Flood Prediction: a Multimodal Machine Learning Approach (Papers Track)

Cynthia Zeng (MIT); Dimitris Bertsimas (MIT)

Paper PDF Cite
Extreme Weather Disaster Management and Relief


Flooding is one of the most destructive and costly natural disasters, and climate changes would further increase risks globally. This work presents a novel mul- timodal machine learning approach for multi-year global flood risk prediction, combining geographical information and historical natural disaster dataset. Our multimodal framework employs state-of-the-art processing techniques to extract embeddings from each data modality, including text-based geographical data and tabular-based time-series data. Experiments demonstrate that a multimodal ap- proach, that is combining text and statistical data, outperforms a single-modality approach. Our most advanced architecture, employing embeddings extracted us- ing transfer learning upon DistilBert model, achieves 75%-77% ROCAUC score in predicting the next 1-5 year flooding event in historically flooded locations. This work demonstrates the potentials of using machine learning for long-term planning in natural disaster management