Examining the nexus of environmental policy, climate physics, and maritime shipping with deep learning models and space-borne data (Papers Track)

Tianle Yuan (University of Maryland, NASA); Hua Song (NASA, SSAI); Chenxi Wang (University of Maryland, NASA); Kerry Meyer (NASA); Siobhan Light (University of Maryland); Sophia von Hippel (University of Arizona); Steven Platnick (NASA); Lazaros Oreopoulos (NASA); Robert Wood (University of Washington); Hans Mohrmann (University of Washington)

Paper PDF Slides PDF Recorded Talk Cite


Ship-tracks are produced by ship exhaust interacting with marine low clouds. They provide an ideal lab for constraining a critical climate forcing. However, no global survey of ship ship-tracks has been made since its discovery 55 years ago, which limits research progress. Here we present the first global map of ship-tracks produced by applying deep segmentation models to large satellite data. Our model generalizes well and is validated against independent data. Large-scale ship-track data are at the nexus of environmental policy, climate physics, and maritime shipping industry: they can be used to study aerosol-cloud interactions, the largest uncertainty source in climate forcing; to evaluate compliance and impacts of environmental policies; and to study the impact of significant socioeconomic events on maritime shipping. Based on twenty years of global data, we show cloud physics responses in ship-tracks strongly depend on the cloud regime. Inter-annual fluctuation in ship-track frequency clearly reflects international trade/economic trends. Emission policies strongly affect the pattern of shipping routes and ship-track occurrence. The combination of stricter fuel standard and the COVID-19 pandemic pushed global ship-track frequency to the lowest level in the record. More applications of our technique and data are envisioned such as detecting illicit shipping activity and checking policy compliance of individual ships.

Recorded Talk (direct link)