Leveraging Machine Learning for Equitable Transition of Energy Systems (Proposals Track)

Enea Dodi (UMass Amherst); Anupama A Sitaraman (University of Massachusetts Amherst); Mohammad Hajiesmaili (UMass Amherst); Prashant Shenoy (University of Massachusetts Amherst)

Paper PDF Slides PDF Recorded Talk Cite


Our planet is facing overlapping crises of climate change, global pandemic, and systemic inequality. To respond climate change, the energy system is in the midst of its most foundational transition since its inception, from traditional fuel-based energy sources to clean renewable sources. While the transition to a low-carbon energy system is in progress, there is an opportunity to make the new system more just and equitable than the current one that is inequitable in many forms. Measuring inequity in the energy system is a formidable task since it is large scale and the data is coming from abundant data sources. In this work, we lay out a plan to leverage and develop scalable machine learning (ML) tools to measure the equity of the current energy system and to facilitate a just transition to a clean energy system. We focus on two concrete examples. First, we explore how ML can help to measure the inequity in the energy inefficiency of residential houses in the scale of a town or a country. Second, we explore how deep learning techniques can help to estimate the solar potential of residential buildings to facilitate a just installation and incentive allocation of solar panels. The application of ML for energy equity is much broader than the above two examples and we highlight some others as well. The result of this research could be used by policymakers to efficiently allocate energy assistance subsidies in the current energy systems and to ensure justice in their energy transition plans.

Recorded Talk (direct link)