Preserving the integrity of the Canadian northern ecosystems through insights provided by reinforcement learning-based Arctic fox movement models (Proposals Track)

Catherine Villeneuve (Université Laval); Frédéric Dulude-De Broin (Université Laval); Pierre Legagneux (Université Laval); Dominique Berteaux (Université du Québec à Rimouski); Audrey Durand (Université Laval)

Paper PDF Slides PDF Recorded Talk

Abstract

Realistic modeling of the movement of the Arctic fox, one of the main predators of the circumpolar world, is crucial to understand the processes governing the distribution of the Canadian Arctic biodiversity. Current methods, however, are unable to adequately account for complex behaviors as well as intra- and interspecific relationships. We propose to harness the potential of reinforcement learning to develop innovative models that will address these shortcomings and provide the backbone to predict how vertebrate communities may be affected by environmental changes in the Arctic, an essential step towards the elaboration of rational conservation actions.

Recorded Talk (direct link)

Loading…