A Deep Learning-based Framework for the Detection of Schools of Herring in Echograms (Papers Track)

Alireza Rezvanifar (University of Victoria); Tunai Porto Marques (University of Victoria ); Melissa Cote (University of Victoria); Alexandra Branzan Albu (University of Victoria); Alex Slonimer (ASL Environmental Sciences); Thomas Tolhurst (ASL Environmental Sciences ); Kaan Ersahin (ASL Environmental Sciences ); Todd Mudge (ASL Environmental Sciences ); Stephane Gauthier (Fisheries and Oceans Canada)

Paper PDF Cite
Ecosystems & Biodiversity Climate Science & Modeling


Tracking the abundance of underwater species is crucial for understanding the effects of climate change on marine ecosystems. Biologists typically monitor underwater sites with echosounders and visualize data as 2D images (echograms); they interpret these data manually or semi-automatically, which is time-consuming and prone to inconsistencies. This paper proposes a deep learning framework for the automatic detection of schools of herring from echograms. Experiments demonstrated that our approach outperforms a traditional machine learning algorithm that uses hand-crafted features. Our framework could easily be expanded to detect more species of interest to sustainable fisheries.