RainBench: Enabling Data-Driven Precipitation Forecasting on a Global Scale (Papers Track) Spotlight

Catherine Tong (University of Oxford); Christian A Schroeder de Witt (University of Oxford); Valentina Zantedeschi (GE Global Research); Daniele De Martini (University of Oxford); Alfredo Kalaitzis (University of Oxford); Matthew Chantry (University of Oxford); Duncan Watson-Parris (University of Oxford); Piotr Bilinski (University of Warsaw / University of Oxford)

Paper PDF Slides PDF Recorded Talk

Abstract

Climate change is expected to aggravate extreme precipitation events, directly impacting the livelihood of millions. Without a global precipitation forecasting system in place, many regions -- especially those constrained in resources to collect expensive groundstation data -- are left behind. To mitigate such unequal reach of climate change, a solution is to alleviate the reliance on numerical models (and by extension groundstation data) by enabling machine-learning-based global forecasts from satellite imagery. Though prior works exist in regional precipitation nowcasting, there lacks work in global, medium-term precipitation forecasting. Importantly, a common, accessible baseline for meaningful comparison is absent. In this work, we present RainBench, a multi-modal benchmark dataset dedicated to advancing global precipitation forecasting. We establish baseline tasks and release PyRain, a data-handling pipeline to enable efficient processing of decades-worth of data by any modeling framework. Whilst our work serves as a basis for a new chapter on global precipitation forecast from satellite imagery, the greater promise lies in the community joining forces to use our released datasets and tools in developing machine learning approaches to tackle this important challenge.

Recorded Talk (direct link)

Loading…