Graph Neural Networks for Improved El Niño Forecasting (Proposals Track)

Salva Rühling Cachay (Technical University of Darmstadt); Emma Erickson (University of Illinois at Urbana-Champaign); Arthur F C Bucker (University of São Paulo); Ernest J Pokropek (Warsaw University of Techology); Willa Potosnak (Duquesne University); Salomey Osei (African Master's of Machine Intelligence(AMMI-GH)); Björn Lütjens (MIT)

Paper PDF Slides PDF Recorded Talk Cite
Climate Science & Modeling Disaster Management and Relief Interpretable ML Time-series Analysis

Abstract

Deep learning-based models have recently outperformed state-of-the-art seasonal forecasting models, such as for predicting El Ni\~no-Southern Oscillation (ENSO). However, current deep learning models are based on convolutional neural networks which are difficult to interpret and can fail to model large-scale atmospheric patterns called teleconnections. Hence, we propose the application of spatiotemporal Graph Neural Networks (GNN) to forecast ENSO at long lead times, finer granularity and improved predictive skill than current state-of-the-art methods. The explicit modeling of information flow via edges may also allow for more interpretable forecasts. Preliminary results are promising and outperform state-of-the art systems for projections 1 and 3 months ahead.

Recorded Talk (direct link)

Loading…