Meta-Learned Bayesian Optimization for Calibrating Building Simulation Models with Multi-Source Data (Papers Track)

Sicheng Zhan (NUS); Gordon Wichern (Mitsubishi Electric Research Laboratories (MERL)); Christopher Laughman (Mitsubishi Electric Research Laboratories); Ankush Chakrabarty (Mitsubishi Electric Research Labs)

Paper PDF Slides PDF Recorded Talk NeurIPS 2021 Poster Cite
Buildings Meta- and Transfer Learning


Well-calibrated building simulation models are key to reducing greenhouse gas emissions and optimizing building performance. Current calibration algorithms do not leverage data collected during previous calibration tasks. In this paper, we employ attentive neural processes (ANP) to meta-learn a distribution using multi-source data acquired during previously seen calibration tasks. The ANP informs a meta-learned Bayesian optimizer to accelerate calibration of new, unseen tasks. The few-shot nature of our proposed algorithm is demonstrated on a library of residential buildings validated by the United States Department of Energy (USDoE).

Recorded Talk (direct link)