Resolving Super Fine-Resolution SIF via Coarsely-Supervised U-Net Regression (Papers Track) Spotlight

Joshua Fan (Cornell University); Di Chen (Cornell University); Jiaming Wen (Cornell University); Ying Sun (Cornell University); Carla P Gomes (Cornell University)

Paper PDF Slides PDF Recorded Talk NeurIPS 2021 Poster Cite

Abstract

Climate change presents challenges to crop productivity, such as increasing the likelihood of heat stress and drought. Solar-Induced Chlorophyll Fluorescence (SIF) is a powerful way to monitor how crop productivity and photosynthesis are affected by changing climatic conditions. However, satellite SIF observations are only available at a coarse spatial resolution (e.g. 3-5km) in most places, making it difficult to determine how individual crop types or farms are doing. This poses a challenging coarsely-supervised regression task; at training time, we only have access to SIF labels at a coarse resolution (3 km), yet we want to predict SIF at a very fine spatial resolution (30 meters), a 100x increase. We do have some fine-resolution input features (such as Landsat reflectance) that are correlated with SIF, but the nature of the correlation is unknown. To address this, we propose Coarsely-Supervised Regression U-Net (CSR-U-Net), a novel approach to train a U-Net for this coarse supervision setting. CSR-U-Net takes in a fine-resolution input image, and outputs a SIF prediction for each pixel; the average of the pixel predictions is trained to equal the true coarse-resolution SIF for the entire image. Even though this is a very weak form of supervision, CSR-U-Net can still learn to predict accurately, due to its inherent localization abilities, plus additional enhancements that facilitate the incorporation of scientific prior knowledge. CSR-U-Net can resolve fine-grained variations in SIF more accurately than existing averaging-based approaches, which ignore fine-resolution spatial variation during training. CSR-U-Net could also be useful for a wide range of "downscaling'" problems in climate science, such as increasing the resolution of global climate models.

Recorded Talk (direct link)

Loading…