Advancing Earth System Model Calibration: A Diffusion-Based Method (Papers Track) Honorable Mention

Yanfang Liu (Oak Ridge National Laboratory); Dan Lu (Oak Ridge National Laboratory); Zezhong Zhang (Oak Ridge National Laboratory); Feng Bao (Florida State University); Guannan Zhang (Oak Ridge National Laboratory)

Paper PDF Slides PDF Poster File Recorded Talk Cite
Generative Modeling Ecosystems & Biodiversity Uncertainty Quantification & Robustness


Understanding of climate impact on ecosystems globally requires site-specific model calibration. Here we introduce a novel diffusion-based uncertainty quantification (DBUQ) method for efficient model calibration. DBUQ is a score-based diffusion model that leverages Monte Carlo simulation to estimate the score function and evaluates a simple neural network to quickly generate samples for approximating parameter posterior distributions. DBUQ is stable, efficient, and can effectively calibrate the model given diverse observations, thereby enabling rapid and site-specific model calibration on a global scale. This capability significantly advances Earth system modeling and our understanding of climate impacts on Earth systems. We demonstrate DBUQ's capability in E3SM land model calibration at the Missouri Ozark AmeriFlux forest site. Both synthetic and real-data applications indicate that DBUQ produces accurate parameter posterior distributions similar to those generated by Markov Chain Monte Carlo sampling but with 30X less computing time. This efficiency marks a significant stride in model calibration, paving the way for more effective and timely climate impact analyses.

Recorded Talk (direct link)