On the potential of Optimal Transport in Geospatial Data Science (Papers Track)

Nina V Wiedemann (ETH Zurich); Martin Raubal (ETH Zürich)

Paper PDF Slides PDF Poster File Recorded Talk Cite
Time-series Analysis Climate Science & Modeling Transportation


Prediction problems in geographic information science and transportation are often motivated by the possibility to enhance operational efficiency and thereby reduce emissions. Examples range from predicting car sharing demand for relocation planning to forecasting traffic congestion for navigation purposes. However, conventional accuracy metrics ignore the spatial distribution of the errors, despite its relevance for operations. Here, we put forward a spatially aware evaluation metric and loss function based on Optimal Transport (OT). Our framework leverages partial OT and can minimize relocation costs in any spatial prediction problem. We showcase the advantages of OT-based evaluation over conventional metrics and further demonstrate the application of an OT loss function for improving forecasts of bike sharing demand and charging station occupancy. Thus, our framework not only aligns with operational considerations, but also signifies a step forward in refining predictions within geospatial applications. All code is available at https://github.com/mie-lab/geospatial_optimal_transport.

Recorded Talk (direct link)