Improving the predictions of ML-corrected climate models with novelty detection (Papers Track)

Clayton H Sanford (Columbia); Anna Kwa (Allen Institute for Artificial Intelligence); Oliver Watt-Meyer (Allen Institute for AI); Spencer Clark (Allen Institute for AI); Noah Brenowitz (Allen Institute for AI); Jeremy McGibbon (Allen Institute for AI); Christopher Bretherton (Allen Institute for AI)

Paper PDF Slides PDF Recorded Talk NeurIPS 2022 Poster Topia Link Cite


While previous works have shown that machine learning (ML) can improve the prediction accuracy of coarse-grid climate models, these ML-augmented methods are more vulnerable to irregular inputs than the traditional physics-based models they rely on. Because ML-predicted corrections feed back into the climate model’s base physics, the ML-corrected model regularly produces out of sample data, which can cause model instability and frequent crashes. This work shows that adding semi-supervised novelty detection to identify out-of-sample data and disable the ML-correction accordingly stabilizes simulations and sharply improves the quality of predictions. We design an augmented climate model with a one-class support vector machine (OCSVM) novelty detector that provides better temperature and precipitation forecasts in a year-long simulation than either a baseline (no-ML) or a standard ML-corrected run. By improving the accuracy of coarse-grid climate models, this work helps make accurate climate models accessible to researchers without massive computational resources.

Recorded Talk (direct link)