Explainable Multi-Agent Recommendation System for Energy-Efficient Decision Support in Smart Homes (Papers Track)

Alona Zharova (Humboldt University of Berlin); Annika Boer (Humboldt University of Berlin); Julia Knoblauch (Humboldt University of Berlin); Kai Ingo Schewina (Humboldt University of Berlin); Jana Vihs (Humboldt University of Berlin)

Paper PDF Slides PDF Recorded Talk NeurIPS 2022 Poster Topia Link Cite


Transparent, understandable, and persuasive recommendations support the electricity consumers’ behavioral change to tackle the energy efficiency problem. This paper proposes an explainable multi-agent recommendation system for load shifting for household appliances. First, we extend a novel multi-agent approach by designing an Explainability Agent that provides explainable recommendations for optimal appliance scheduling in a textual and visual manner. Second, we enhance the predictive capacity of other agents by including weather data and applying state-of-the-art models (i.e., k-nearest-neighbours, extreme gradient boosting, adaptive boosting, random forest, logistic regression, and explainable boosting machines). Since we want to help the user understand a single recommendation, we focus on local explainability approaches. In particular, we apply post-model approaches LIME (local, interpretable, model-agnostic explanation) and SHAP (Shapley additive explanations) as model-agnostic tools that can explain the predictions of the chosen classifiers. We further provide an overview of the predictive and explainability performance. Our results show a substantial improvement in the performance of the multi-agent system while at the same time opening up the “black box” of recommendations. To show the pathway to positive impact regarding climate change, we provide a discussion on the potential impact of the suggested approach.

Recorded Talk (direct link)