Decarbonizing Maritime Operations: A Data-Driven Revolution (Proposals Track)

Ismail Bourzak (UQAR); Loubna Benabou (UQAR); Sara El Mekkaoui (DNV); Abdelaziz Berrado (EMI Engineering School)

Paper PDF Slides PDF Poster File Recorded Talk NeurIPS 2023 Poster Cite
Oceans & Marine Systems


The maritime industry faces an unprecedented challenge in the form of decarbonization. With strict emissions reduction targets in place, the industry is turning to machine learning-based decision support models to achieve sustainability goals. This proposal explores the transformative potential of digitalization and machine learning approaches in maritime operations, from optimizing ship speeds to enhancing supply chain management. By examining various machine learning techniques, this work provides a roadmap for reducing emissions while improving operational efficiency in the maritime sector.

Recorded Talk (direct link)