Scaling Sodium-ion Battery Development with NLP (Papers Track)

Mrigi Munjal (Massachusetts Institute of Technology); Thorben Pein (TU Munich); Vineeth Venugopal (Massachusetts Institute of Technology); Kevin Huang (Massachusetts Institute of Technology); Elsa Olivetti (Massachusetts Institute of Technology)

Paper PDF Poster File NeurIPS 2023 Poster Cite
Chemistry & Materials Power & Energy


Sodium-ion batteries (SIBs) have been gaining attention for applications like grid-scale energy storage, largely owing to the abundance of sodium and an expected favorable $/kWh figure. SIBs can leverage the well-established manufacturing knowledge of Lithium-ion Batteries (LIBs), but several materials synthesis and performance challenges for electrode materials need to be addressed. This work extracts a large database of challenges restricting the performance and synthesis of SIB cathode active materials (CAMs) and pairs them with corresponding mitigation strategies from the SIB literature by employing custom natural language processing (NLP) tools. The derived insights enable scientists in research and industry to navigate a large number of proposed strategies and focus on impactful scalability-informed mitigation strategies to accelerate the transition from lab to commercialization.