An Adaptive Hydropower Management Approach for Downstream Ecosystem Preservation (Proposals Track)

Cecília Coelho (University of Minho); Ming Jin (Virginia Tech); M. Fernanda P. Costa (Dep. Mathematics, University of Minho); Luís L. Ferrás (University of Porto)

Paper PDF Poster File Cite
Ecosystems & Biodiversity Climate Science & Modeling Power & Energy Time-series Analysis

Abstract

Hydropower plants play a pivotal role in advancing clean and sustainable energy production, contributing significantly to the global transition towards renewable energy sources. However, hydropower plants are currently perceived both positively as sources of renewable energy and negatively as disruptors of ecosystems. In this work, we highlight the overlooked potential of using hydropower plant as protectors of ecosystems by using adaptive ecological discharges. To advocate for this perspective, we propose using a neural network to predict the minimum ecological discharge value at each desired time. Additionally, we present a novel framework that seamlessly integrates it into hydropower management software, taking advantage of the well-established approach of using traditional constrained optimisation algorithms. This novel approach not only protects the ecosystems from climate change but also contributes to potentially increase the electricity production.