Behavioral and Social Science

Workshop Papers

Venue Title
NeurIPS 2023 Towards Understanding Climate Change Perceptions: A Social Media Dataset (Papers Track)
Abstract and authors: (click to expand)

Abstract: Climate perceptions shared on social media are an invaluable barometer of public attention. By directing research towards this topic, we can eventually improve the effectiveness of climate change communication, increase public engagement, and enhance climate change education. We propose two real-world image datasets to promote impactful research both in the Computer Vision community and beyond. Firstly, ClimateTV, a dataset containing over 700,000 climate change-related images posted on Twitter and labelled on basis of the image hashtags. Secondly, ClimateCT, a Twitter dataset containing images with five-dimensional annotations in super-categories (i) Animals, (ii) Climate action, (iii) Consequences, (iv) Setting, and (v) Type. These challenging classification datasets contain classes which are designed according to their relevance in the context of climate change. The challenging nature of the datasets is given by varying class diversities (e.g. polar bear vs. land mammal) and foci (e.g. arctic vs. snowy residential area). The analyses of our datasets using CLIP embeddings and query optimization (CoCoOp) further showcase the challenging nature of ClimateTV and ClimateCT.

Authors: Katharina Prasse (University of Siegen); Steffen Jung (MPII); Isaac B Bravo (Technische Universität München); Stefanie Walter (Technical University of Munich); Margret Keuper (University of Siegen, Max Planck Institute for Informatics)

NeurIPS 2023 Understanding Opinions Towards Climate Change on Social Media (Papers Track)
Abstract and authors: (click to expand)

Abstract: Social media platforms such as Twitter (now known as X) have revolutionized how the public engage with important societal and political topics. Recently, climate change discussions on social media became a catalyst for political polarization and the spreading of misinformation. In this work, we aim to understand how real world events influence the opinions of individuals towards climate change related topics on social media. To this end, we extracted and analyzed a dataset of 13.6 millions tweets sent by 3.6 million users from 2006 to 2019. Then, we construct a temporal graph from the user-user mentions network and utilize the Louvain community detection algorithm to analyze the changes in community structure around Conference of the Parties on Climate Change (COP) events. Next, we also apply tools from the Natural Language Processing literature to perform sentiment analysis and topic modeling on the tweets. Our work acts as a first step towards understanding the evolution of pro-climate change communities around COP events. Answering these questions helps us understand how to raise people's awareness towards climate change thus hopefully calling on more individuals to join the collaborative effort in slowing down climate change.

Authors: Yashaswi Pupneja (University of Montreal); Yuesong Zou (McGill University); Sacha Levy (Yale University); Shenyang Huang (Mila/McGill University)

NeurIPS 2023 Mapping the Landscape of Artificial Intelligence in Climate Change Research: A Meta-Analysis on Impact and Applications (Proposals Track)
Abstract and authors: (click to expand)

Abstract: This proposal advocates a comprehensive and systematic analysis aimed at mapping and characterizing the intricate landscape of Artificial Intelligence and Machine Learning applications and their impacts within the domain of climate change research, both in adaption and mitigation efforts. Notably, a significant upswing in this interdisciplinary intersection has been observed since 2020. Utilizing advanced topic clustering techniques and qualitative analysis, we have discerned 12 distinct macro areas that supplement, enrich, and expand upon those identified in prior research. The primary objective of this undertaking is to furnish a data-rich panoramic view and informative insights regarding the functions and tools of the mentioned disciplines. Our intention is to offer valuable guidance to the scholarly community and propel further research endeavors, encouraging meticulous examinations of research trends and gaps in addressing the formidable challenges posed by climate change and the climate crisis.

Authors: Christian Burmester (Osnabrück University); Teresa Scantamburlo (UniversityofVenice)

ICLR 2023 Mining Effective Strategies for Climate Change Communication (Papers Track)
Abstract and authors: (click to expand)

Abstract: With the goal of understanding effective strategies to communicate about climate change, we build interpretable models to rank tweets related to climate change with respect to the engagement they generate. Our models are based on the Bradley-Terry model of pairwise comparison outcomes and use a combination of the tweets’ topic and metadata features to do the ranking. To remove confounding factors related to author popularity and minimise noise, they are trained on pairs of tweets that are from the same author and around the same time period and have a sufficiently large difference in engagement. The models achieve good accuracy on a held-out set of pairs. We show that we can interpret the parameters of the trained model to identify the topic and metadata features that contribute to high engagement. Among other observations, we see that topics related to climate projections, human cost and deaths tend to have low engagement while those related to mitigation and adaptation strategies have high engagement. We hope the insights gained from this study will help craft effective climate communication to promote engagement, thereby lending strength to efforts to tackle climate change.

Authors: Aswin Suresh (EPFL); Lazar Milikic (EPFL); Francis Murray (EPFL); Yurui Zhu (EPFL); Matthias Grossglauser (École Polytechnique Fédérale de Lausanne (EPFL))

NeurIPS 2022 Analyzing Micro-Level Rebound Effects of Energy Efficient Technologies (Papers Track)
Abstract and authors: (click to expand)

Abstract: Energy preservation is central to prevent resource depletion, climate change and environment degradation. Investment in raising efficiency of appliances is among the most significant attempts to save energy. Ironically, introduction of many such energy saving appliances increased the total energy consumption instead of reducing it. This effect in literature is attributed to the inherent Jevons paradox (JP) and optimism bias (OB) in consumer behavior. However, the magnitude of these instincts vary among different people. Identification of this magnitude for each household can enable the development of appropriate policies that induce desired energy saving behaviour. Using the RECS 2015 dataset, the paper uses machine learning for each electrical appliance to determine the dependence of their total energy consumption on their energy star rating. This shows that only substitutable appliances register increase in energy demand upon boosted efficiency. Lastly, an index is noted to indicate the varying influence of JP and OB on different households.

Authors: Mayank Jain (University College Dublin); Mukta Jain (Delhi School of Economics); Tarek T. Alskaif (Wageningen University); Soumyabrata Dev (University College Dublin)

NeurIPS 2022 Topic correlation networks inferred from open-ended survey responses reveal signatures of ideology behind carbon tax opinion (Papers Track)
Abstract and authors: (click to expand)

Abstract: Ideology can often render policy design ineffective by overriding what, at face value, are rational incentives. A timely example is carbon pricing, whose public support is strongly influenced by ideology. As a system of ideas, ideology expresses itself in the way people explain themselves and the world. As an object of study, ideology is then amenable to a generative modelling approach within the text-as-data paradigm. Here, we analyze the structure of ideology underlying carbon tax opinion using topic models. An idea, termed a topic, is operationalized as the fixed set of proportions with which words are used when talking about it. We characterize ideology through the relational structure between topics. To access this latent structure, we use the highly expressive Structural Topic Model to infer topics and the weights with which individual opinions mix topics. We fit the model to a large dataset of open-ended survey responses of Canadians elaborating on their support of or opposition to the tax. We propose and evaluate statistical measures of ideology in our data, such as dimensionality and heterogeneity. Finally, we discuss the implications of the results for transition policy in particular, and of our approach to analyzing ideology for computational social science in general.

Authors: Maximilian Puelma Touzel (Mila)

NeurIPS 2022 Analyzing the global energy discourse with machine learning (Proposals Track)
Abstract and authors: (click to expand)

Abstract: To transform our economy towards net-zero emissions, industrial development of clean energy technologies (CETs) to replace fossil energy technologies (FETs) is crucial. Although the media has great power in influencing consumer behavior and decision making in business and politics, its role in the energy transformation is still underexplored. In this paper, we analyze the global energy discourse via machine learning. For this, we collect a large-scale dataset with ~5 million news articles from seven of the world’s major CO2 emitting countries, covering eight CETs and four FETs. Using machine learning, we then analyze the content of news articles on a highly granular level and along several dimensions, namely relevance (for the energy discourse), context (e.g., costs, regulation, investment), and connotations (e.g., high/increasing vs. low/decreasing costs). By linking empirical discourse patterns to investment and deployment data of CETs and FETs, this study advances the current understanding about the role of the media in the energy transformation. Thereby, it enables businesses, investors, and policy makers to respond more effectively to sensitive topics in the media discourse and leverage windows of opportunity for scaling CETs.

Authors: Malte Toetzke (ETH Zurich); Benedict Probst (ETH Zurich); Yasin Tatar (ETH Zurich); Stefan Feuerriegel (LMU Munich); Volker Hoffmann (ETH Zurich)

ICML 2021 Wildfire Smoke Plume Segmentation Using Geostationary Satellite Imagery (Papers Track)
Abstract and authors: (click to expand)

Abstract: Wildfires have increased in frequency and severity over the past two decades, especially in the Western United States. Beyond physical infrastructure damage caused by these wildfire events, researchers have increasingly identified harmful impacts of particulate matter generated by wildfire smoke on respiratory, cardiovascular, and cognitive health. This inference is difficult due to the spatial and temporal uncertainty regarding how much particulate matter is specifically attributable to wildfire smoke. One factor contributing to this challenge is the reliance on manually drawn smoke plume annotations, which are often noisy representations limited to the United States. This work uses deep convolutional neural networks to segment smoke plumes from geostationary satellite imagery. We compare the performance of predicted plume segmentations versus the noisy annotations using causal inference methods to estimate the amount of variation each explains in Environmental Protection Agency (EPA) measured surface level particulate matter <2.5μm in diameter (PM2.5).

Authors: Jeffrey L Wen (Stanford University); Marshall Burke (Stanford University)

ICML 2021 From Talk to Action with Accountability: Monitoring the Public Discussion of Policy Makers with Deep Neural Networks and Topic Modelling (Proposals Track)
Abstract and authors: (click to expand)

Abstract: Decades of research on climate have provided a consensus that human activity has changed the climate and we are currently heading into a climate crisis. While public discussion and research efforts on climate change mitigation have increased, potential solutions need to not only be discussed but also effectively deployed. For preventing mismanagement and holding policy makers accountable, transparency and degree of information about government processes have been shown to be crucial. However, currently the quantity of information about climate change discussions and the range of sources make it increasingly difficult for the public and civil society to maintain an overview to hold politicians accountable. In response, we propose a multi-source topic aggregation system (MuSTAS) which processes policy makers speech and rhetoric from several publicly available sources into an easily digestible topic summary. MuSTAS uses novel multi-source hybrid latent Dirichlet allocation to model topics from a variety of documents. This topic digest will serve the general public and civil society in assessing where, how, and when politicians talk about climate and climate policies, enabling them to hold politicians accountable for their actions to mitigate climate change and lack thereof.

Authors: Vili Hätönen (Emblica); Fiona Melzer (University of Edinburgh)

ICML 2021 NeuralNERE: Neural Named Entity Relationship Extraction for End-to-End Climate Change Knowledge Graph Construction (Proposals Track)
Abstract and authors: (click to expand)

Abstract: This paper proposes an end-to-end Neural Named Entity Relationship Extraction model (called NeuralNERE) for climate change knowledge graph (KG) construction, directly from the raw text of relevant news articles. The proposed model will not only remove the need for any kind of human supervision for building knowledge bases for climate change KG construction (used in the case of supervised or dictionary-based KG construction methods), but will also prove to be highly valuable for analyzing climate change by summarising relationships between different factors responsible for climate change, extracting useful insights & reasoning on pivotal events, and helping industry leaders in making more informed future decisions. Additionally, we also introduce the Science Daily Climate Change dataset (called SciDCC) that contains over 11k climate change news articles scraped from the Science Daily website, which could be used for extracting prior knowledge for constructing climate change KGs.

Authors: Prakamya Mishra (Independent Researcher); Rohan Mittal (Independent Researcher)

NeurIPS 2020 Formatting the Landscape: Spatial conditional GAN for varying population in satellite imagery (Papers Track)
Abstract and authors: (click to expand)

Abstract: Climate change is expected to reshuffle the settlement landscape: forcing people in affected areas to migrate, to change their lifeways, and continuing to affect demographic change throughout the world. Changes to the geographic distribution of population will have dramatic impacts on land use and land cover and thus constitute one of the major challenges of planning for climate change scenarios. In this paper, we explore a generative model framework for generating satellite imagery conditional on gridded population distributions. We make additions to the existing ALAE [30] architecture, creating a spatially conditional version: SCALAE. This method allows us to explicitly disentangle population from the model’s latent space and thus input custom population forecasts into the generated imagery. We postulate that such imagery could then be directly used for land cover and land use change estimation using existing frameworks, as well as for realistic visualisation of expected local change. We evaluate the model by comparing pixel and semantic reconstructions, as well as calculate the standard FID metric. The results suggest the model captures population distributions accurately and delivers a controllable method to generate realistic satellite imagery.

Authors: Tomas Langer (Intuition Machines); Natalia Fedorova (Max Planck Institute for Evolutionary Anthropology); Ron Hagensieker (Osir.io)

NeurIPS 2020 Using attention to model long-term dependencies in occupancy behavior (Papers Track)
Abstract and authors: (click to expand)

Abstract: Over the past years, more and more models have been published that aim to capture relationships in human residential behavior. Most of these models are different Markov variants or regression models that have a strong assumption bias and are therefore unable to capture complex long-term dependencies and the diversity in occupant behavior. This work shows that attention based models are able to capture complex long-term dependencies in occupancy behavior and at the same time adequately depict the diversity in behavior across the entire population and different socio-demographic groups. By combining an autoregressive generative model with an imputation model, the advantages of two data sets are combined and new data are generated which are beneficial for multiple use cases (e.g. generation of consistent household energy demand profiles). The two step approach generates synthetic activity schedules that have similar statistical properties as the empirical collected schedules and do not contain direct information about single individuals. Therefore, the presented approach forms the basis to make data on occupant behavior freely available, so that further investigations based on the synthetic data can be carried out without a large data application effort. In future work it is planned to take interpersonal dependencies into account in order to be able to generate entire household behavior profiles.

Authors: Max Kleinebrahm (Karlsruhe Institut für Technologie); Jacopo Torriti (University Reading); Russell McKenna (University of Aberdeen); Armin Ardone (Karlsruhe Institut für Technologie); Wolf Fichtner (Karlsruhe Institute of Technology)

NeurIPS 2020 Climate-FEVER: A Dataset for Verification of Real-World Climate Claims (Papers Track)
Abstract and authors: (click to expand)

Abstract: Our goal is to introduce \textsc{climate-fever}, a new publicly available dataset for verification of climate change-related claims. By providing a dataset for the research community, we aim to help and encourage work on improving algorithms for retrieving climate-specific information and detecting fake news in social and mass media to reduce the impact of misinformation on the formation of public opinion on climate change. We adapt the methodology of \textsc{fever} \cite{thorne2018fever}, the largest dataset of artificially designed claims, to real-life claims collected from the Internet. Although during this process, we could count on the support of renowned climate scientists, it turned out to be no easy task. We discuss the surprising, subtle complexity of modeling real-world climate-related claims within the \textsc{fever} framework, which provides a valuable challenge for general natural language understanding. We hope that our work will mark the beginning of an exciting long-term joint effort by the climate science and \textsc{ai} community to develop robust algorithms to verify the facts for climate-related claims.

Authors: Markus Leippold (University of Zurich); Thomas Diggelmann (ETH Zurich)

NeurIPS 2020 ClimaText: A Dataset for Climate Change Topic Detection (Papers Track)
Abstract and authors: (click to expand)

Abstract: Climate change communication in the mass media and other textual sources may affect and shape public perception. Extracting climate change information from these sources is an important task, e.g., for filtering content and e-discovery, sentiment analysis, automatic summarization, question-answering, and fact-checking. However, automating this process is a challenge, as climate change is a complex, fast-moving, and often ambiguous topic with scarce resources for popular text-based AI tasks. In this paper, we introduce \textsc{ClimaText}, a dataset for sentence-based climate change topic detection, which we make publicly available. We explore different approaches to identify the climate change topic in various text sources. We find that popular keyword-based models are not adequate for such a complex and evolving task. Context-based algorithms like BERT~\cite{devlin2018bert} can detect, in addition to many trivial cases, a variety of complex and implicit topic patterns. Nevertheless, our analysis reveals a great potential for improvement in several directions, such as, e.g., capturing the discussion on indirect effects of climate change. Hence, we hope this work can serve as a good starting point for further research on this topic.

Authors: Markus Leippold (University of Zurich); Francesco Saverio Varini (ETH)

NeurIPS 2020 The Human Effect Requires Affect: Addressing Social-Psychological Factors of Climate Change with Machine Learning (Proposals Track)
Abstract and authors: (click to expand)

Abstract: Machine learning has the potential to aid in mitigating the human effects of climate change. Previous applications of machine learning to tackle the human effects in climate change include approaches like informing individuals of their carbon footprint and strategies to reduce it. For these methods to be the most effective they must consider relevant social-psychological factors for each individual. Of social-psychological factors at play in climate change, affect has been previously identified as a key element in perceptions and willingness to engage in mitigative behaviours. In this work, we propose an investigation into how affect could be incorporated to enhance machine learning based interventions for climate change. We propose using affective agent-based modelling for climate change as well as the use of a simulated climate change social dilemma to explore the potential benefits of affective machine learning interventions. Behavioural and informational interventions can be a powerful tool in helping humans adopt mitigative behaviours. We expect that utilizing affective ML can make interventions an even more powerful tool and help mitigative behaviours become widely adopted.

Authors: Kyle Tilbury (University of Waterloo); Jesse Hoey (University of Waterloo)

NeurIPS 2020 Machine Learning Informed Policy for Environmental Justice in Atlanta with Climate Justice Implications (Proposals Track)
Abstract and authors: (click to expand)

Abstract: Environmental hazards are not evenly distributed between the privileged and the protected classes in the U.S. Neighborhood zoning and planning of hazardous treatment, storage, and disposal facilities (TSDs) play a significant role in this sanctioned environmental racism. TSDs and toxic chemical releases into the air are accounted for by the U.S. Environmental Protection Agency’s (EPA) Toxic Release Inventories (TRIs) [2,4,7, 14]. TSDs and toxic chemical releases not only emit carbon dioxide and methane, which are the top two drivers of climate change, but also emit contaminants, such as arsenic, lead, and mercury into the water, air, and crops [12]. Studies on spatial disparities in TRIs and TSDs based on race/ethnicity and socioeconomic status (SES) in U.S. cities, such as Charleston, SC, San Joaquin Valley, CA, and West Oakland, CA showed that there are more TRIs and TSDs in non-white and low SES areas in those cities [2,4,7]. Environmental justice recognizes that the impacts of environmental burdens, such as socioeconomic and public health outcomes, are not equitably distributed, and in fact bear the heaviest burden on marginalized people, including communities of color and low-income communities [12]. In our case, environmental justice has a strong tie to climate justice since the TRIs release carbon dioxide and methane into the atmosphere.

Authors: Lelia Hampton (Massachusetts Institute of Technology)