Carbon Capture & Sequestration

Blog Posts

Webinars

Workshop Papers

Venue Title
NeurIPS 2023 Soil Organic Carbon Estimation from Climate-related Features with Graph Neural Network (Papers Track)
Abstract and authors: (click to expand)

Abstract: Soil organic carbon (SOC) plays a pivotal role in the global carbon cycle, impacting climate dynamics and necessitating accurate estimation for sustainable land and agricultural management. While traditional methods of SOC estimation face resolution and accuracy challenges, recent advancements harness remote sensing, machine learning, and high-resolution satellite mapping. Graph Neural Networks (GNNs), especially when integrated with positional encoders, offer promise in capturing intricate relationships between soil and climate. Using the LUCAS database, this study compared four GNN operators in the positional encoder framework. Results revealed that the PESAGE and PETransformer models outperformed others in SOC estimation, indicating their potential in capturing the complex interplay between SOC and climate features. Our findings underscore the potential of GNN architectures in advancing SOC prediction, paving the way for future explorations with more advanced GNN models.

Authors: Weiying Zhao (Deep Planet); Natalia Efremova (Queen Mary University London)

NeurIPS 2023 Domain Adaptation for Sustainable Soil Management using Causal and Contrastive Constraint Minimization (Papers Track)
Abstract and authors: (click to expand)

Abstract: Monitoring organic matter is pivotal for maintaining soil health and can help inform sustainable soil management practices. While sensor-based soil information offers higher-fidelity and reliable insights into organic matter changes, sampling and measuring sensor data is cost-prohibitive. We propose a multi-modal, scalable framework that can estimate organic matter from remote sensing data, a more readily available data source while leveraging sparse soil information for improving generalization. Using the sensor data, we preserve underlying causal relations among sensor attributes and organic matter. Simultaneously we leverage inherent structure in the data and train the model to discriminate among domains using contrastive learning. This causal and contrastive constraint minimization ensures improved generalization and adaptation to other domains. We also shed light on the interpretability of the framework by identifying attributes that are important for improving generalization. Identifying these key soil attributes that affect organic matter will aid in efforts to standardize data collection efforts.

Authors: Somya Sharma (U. Minnesota); Swati Sharma (Microsoft Research); RAFAEL PADILHA (Microsoft Research); Emre Kiciman (Microsoft Research); Ranveer Chandra (Microsoft Research)

NeurIPS 2023 Inference of CO2 flow patterns--a feasibility study (Papers Track)
Abstract and authors: (click to expand)

Abstract: As the global deployment of carbon capture and sequestration (CCS) technology intensifies in the fight against climate change, it becomes increasingly imperative to establish robust monitoring and detection mechanisms for potential underground CO2 leakage, particularly through pre-existing or induced faults in the storage reservoir's seals. While techniques such as history matching and time-lapse seismic monitoring of CO2 storage have been used successfully in tracking the evolution of CO2 plumes in the subsurface, these methods lack principled approaches to characterize uncertainties related to the CO2 plumes' behavior. Inclusion of systematic assessment of uncertainties is essential for risk mitigation for the following reasons: (i) CO2 plume-induced changes are small and seismic data is noisy; (ii) changes between regular and irregular (e.g., caused by leakage) flow patterns are small; and (iii) the reservoir properties that control the flow are strongly heterogeneous and typically only available as distributions. To arrive at a formulation capable of inferring flow patterns for regular and irregular flow from well and seismic data, the performance of conditional normalizing flow will be analyzed on a series of carefully designed numerical experiments. While the inferences presented are preliminary in the context of an early CO2 leakage detection system, the results do indicate that inferences with conditional normalizing flows can produce high-fidelity estimates for CO2 plumes with or without leakage. We are also confident that the inferred uncertainty is reasonable because it correlates well with the observed errors. This uncertainty stems from noise in the seismic data and from the lack of precise knowledge of the reservoir's fluid flow properties.

Authors: Abhinav Prakash Gahlot (Georgia Institute of Technology); Huseyin Tuna Erdinc (Georgia Institute of Technology); Rafael Orozco (Georgia Institute of Technology); Ziyi Yin (Georgia Institute of Technology); Felix Herrmann (Georgia Institute of Technology)

NeurIPS 2023 AI assisted Search for Atmospheric CO2 Capture (Papers Track)
Abstract and authors: (click to expand)

Abstract: Carbon capture technologies is an important tool for mitigating climate change. In recent years, polymer membrane separation methods have emerged as a promising technology for separating CO2 and other green house gases from the atmosphere. Designing new polymers for such tasks is quite difficult. In this work we look at machine learning based methods to search for new polymer designs optimized for CO2 separation. An ensemble ML models is trained on a large database of molecules to predict permeabilities of CO2/N2 and CO2/O2 pairs. We then use search based optimization to discover new polymers that surpass existing polymer designs. Simulations are then done to verify the predicted performance of the new designs. Overall result suggests that ML based search can be used to discover new polymers optimized for carbon capture.

Authors: Shivashankar Shivashankar (Student)

ICLR 2023 An automatic mobile approach for Tree DBH Estimation Using a Depth Map and a Regression Convolutional Neural Network (Papers Track)
Abstract and authors: (click to expand)

Abstract: Carbon credit programs finance projects to reduce emissions, remove pollutants, improve livelihoods, and protect natural ecosystems. Ensuring the quality and integrity of such projects is essential to their success. One of the most important variables used in nature-based solutions to measure carbon sequestration is the diameter at breast height (DBH) of trees. In this paper, we propose an automatic mobile computer vision method to estimate the DBH of a tree using a single depth map on a smartphone, along with our created dataset DepthMapDBH2023. We successfully demonstrated that this dataset paired with a lightweight regression convolutional neural network is able to accurately estimate the DBH of trees distinct in appearance, shape, number of tree forks, tree density and crowding, and vine presence. Automation of these measurements will help crews in the field who are collecting data for forest inventories. Gathering as much on-the-ground data as possible is required to ensure the transparency of carbon credit projects. Access to high-quality datasets of manual measurements helps improve biomass models which are widely used in the field of ecological simulation. The code used in this paper will be publicly available on Github and the dataset on Kaggle.

Authors: Margaux Masson-Forsythe (Earthshot Labs); Margaux Masson-Forsythe (Earthshot Labs)

ICLR 2023 Nested Fourier Neural Operator for Basin-Scale 4D CO2 Storage Modeling (Papers Track)
Abstract and authors: (click to expand)

Abstract: Carbon capture and storage (CCS) plays an essential role in global decarbonization. Scaling up CCS requires accurate and high-resolution modeling of the storage reservoir pressure buildup and the gaseous plume migration. However, such modeling is very challenging at scale due to the high computational costs of existing numerical methods. This challenge leads to significant uncertainty in evaluating storage opportunities which can delay the pace of global CCS deployments. We introduce a machine-learning approach for dynamic basin-scale modeling that speeds up flow prediction nearly 700,000 times compared to existing methods. Our framework, Nested Fourier Neural Operator (FNO), provides a general-purpose simulator alternative under diverse reservoir conditions, geological heterogeneity, and injection schemes. It enables unprecedented real-time high-fidelity modeling to support decision-making in basin-scale CCS projects.

Authors: Gege Wen (Stanford University)

NeurIPS 2022 Image-Based Soil Organic Carbon Estimation from Multispectral Satellite Images with Fourier Neural Operator and Structural Similarity (Papers Track)
Abstract and authors: (click to expand)

Abstract: Soil organic carbon (SOC) sequestration is the transfer and storage of atmospheric carbon dioxide in soils, which plays an important role in climate change mitigation. SOC concentration can be improved by proper land use, thus it is beneficial if SOC can be estimated at a regional or global scale. As multispectral satellite data can provide SOC-related information such as vegetation and soil properties at a global scale, estimation of SOC through satellite data has been explored as an alternative to manual soil sampling. Although existing works show promising results, most studies are based on pixel-based approaches with traditional machine learning methods, and convolutional neural networks (CNNs) are seldom used. To study the advantages of using CNNs on SOC remote sensing, in this paper, we propose the FNO-DenseNet based on the state-of-the-art Fourier neural operator (FNO). By combining the advantages of the FNO and DenseNet, the FNO-DenseNet outperformed the FNO in our experiments with hundreds of times fewer parameters. The FNO-DenseNet also outperformed a pixel-based random forest by 18% in the mean absolute percentage error. To the best of our knowledge, this is the first work of applying the FNO on SOC remote sensing.

Authors: Ken C. L. Wong (IBM Research – Almaden Research Center); Levente Klein (IBM Research); Ademir Ferreira da Silva (IBM Research); Hongzhi Wang (IBM Almaden Research Center); Jitendra Singh (IBM Research - India); Tanveer Syeda-Mahmood (IBM Research)

NeurIPS 2022 A POMDP Model for Safe Geological Carbon Sequestration (Papers Track)
Abstract and authors: (click to expand)

Abstract: Geological carbon capture and sequestration (CCS), where CO2 is stored in subsurface formations, is a promising and scalable approach for reducing global emissions.However, if done incorrectly, it may lead to earthquakes and leakage of CO2 back to the surface, harming both humans and the environment. These risks are exacerbated by the large amount of uncertainty in the structure of the storage formation. For these reasons, we propose that CCS operations be modeled as a partially observable Markov decision process (POMDP) and decisions be informed using automated planning algorithms. To this end, we develop a simplified model of CCS operations based on a 2D spillpoint analysis that retains many of the challenges and safety considerations of the real-world problem. We show how off-the-shelf POMDP solvers outperform expert baselines for safe CCS planning. This POMDP model can be used as a test bed to drive the development of novel decision-making algorithms for CCS operations.

Authors: Anthony Corso (Stanford University); Yizheng Wang (Stanford Univerity); Markus Zechner (Stanford University); Jef Caers (Stanford University); Mykel J Kochenderfer (Stanford University)

NeurIPS 2022 Industry-scale CO2 Flow Simulations with Model-Parallel Fourier Neural Operators (Papers Track)
Abstract and authors: (click to expand)

Abstract: Carbon capture and storage (CCS) is one of the most promising technologies for reducing greenhouse gas emissions and relies on numerical reservoir simulations for identifying and monitoring CO2 storage sites. In many commercial settings however, numerical reservoir simulations are too computationally expensive for important downstream application such as optimization or uncertainty quantification. Deep learning-based surrogate models offer the possibility to solve PDEs many orders of magnitudes faster than conventional simulators, but they are difficult to scale to industrial-scale problem settings. Using model-parallel deep learning, we train the largest CO2 surrogate model to date on a 3D simulation grid with two million grid points. To train the 3D simulator, we generate a new training dataset based on a real-world CCS simulation benchmark. Once trained, each simulation with the network is five orders of magnitude faster than a numerical reservoir simulator and 4,500 times cheaper. This paves the way to applications that require thousands of (sequential) simulations, such as optimizing the location of CO2 injection wells to maximize storage capacity and minimize risk of leakage.

Authors: Philipp A Witte (Microsoft); Russell Hewett (Microsoft); Ranveer Chandra (Microsoft Research)

NeurIPS 2022 Guided Transformer Network for Detecting Methane Emissions in Sentinel-2 Satellite Imagery (Proposals Track)
Abstract and authors: (click to expand)

Abstract: Methane (CH4) is the chief contributor to global climate change and its mitigation is targeted by the EU, US and jurisdictions worldwide [2]. Recent studies have shown that imagery from the multi-spectral instrument on Sentinel-2 satellites is capable of detecting and estimating large methane emissions. However, most of the current methods rely on temporal relations between a ratio of shortwave-infrared spectra and assume relatively constant ground conditions, and availability of ground information on when there was no methane emission on site. To address such limitations we propose a guided query-based transformer neural network architecture, that will detect and quantify methane emissions without dependence on temporal information. The guided query aspect of our architecture is driven by a Sentinel Enhanced Matched Filter (SEMF) approach, also discussed in this paper. Our network uses all 12 spectral channels of Sentinel-2 imagery to estimate ground terrain and detect methane emissions. No dependence on temporal data makes it more robust to changing ground and terrain conditions and more computationally efficient as it reduces the need to process historical time-series imagery to compute a single date emissions analysis.

Authors: Satish Kumar (University of California, Santa Barbara); William Kingwill (Orbio Earth); Rozanne Mouton (Orbio Earth); Wojciech Adamczyk (ETH, Zurich); Robert Huppertz (Orbio Earth); Evan D Sherwin (Stanford University, Energy and Resources Engineering)

NeurIPS 2022 ForestBench: Equitable Benchmarks for Monitoring, Reporting, and Verification of Nature-Based Solutions with Machine Learning (Proposals Track)
Abstract and authors: (click to expand)

Abstract: Restoring ecosystems and reducing deforestation are necessary tools to mitigate the anthropogenic climate crisis. Current measurements of forest carbon stock can be inaccurate, in particular for underrepresented and small-scale forests in the Global South, hindering transparency and accountability in the Monitoring, Reporting, and Verification (MRV) of these ecosystems. There is thus need for high quality datasets to properly validate ML-based solutions. To this end, we present ForestBench, which aims to collect and curate geographically-balanced gold-standard datasets of small-scale forest plots in the Global South, by collecting ground-level measurements and visual drone imagery of individual trees. These equitable validation datasets for ML-based MRV of nature-based solutions shall enable assessing the progress of ML models for estimating above-ground biomass, ground cover, and tree species diversity.

Authors: Lucas Czech (Carnegie Institution for Science); Björn Lütjens (MIT); David Dao (ETH Zurich)

NeurIPS 2022 Personalizing Sustainable Agriculture with Causal Machine Learning (Proposals Track) Best Paper: Proposals
Abstract and authors: (click to expand)

Abstract: To fight climate change and accommodate the increasing population, global crop production has to be strengthened. To achieve the "sustainable intensification" of agriculture, transforming it from carbon emitter to carbon sink is a priority, and understanding the environmental impact of agricultural management practices is a fundamental prerequisite to that. At the same time, the global agricultural landscape is deeply heterogeneous, with differences in climate, soil, and land use inducing variations in how agricultural systems respond to farmer actions. The "personalization" of sustainable agriculture with the provision of locally adapted management advice is thus a necessary condition for the efficient uplift of green metrics, and an integral development in imminent policies. Here, we formulate personalized sustainable agriculture as a Conditional Average Treatment Effect estimation task and use Causal Machine Learning for tackling it. Leveraging climate data, land use information and employing Double Machine Learning, we estimate the heterogeneous effect of sustainable practices on the field-level Soil Organic Carbon content in Lithuania. We thus provide a data-driven perspective for targeting sustainable practices and effectively expanding the global carbon sink.

Authors: Georgios Giannarakis (National Observatory of Athens); Vasileios Sitokonstantinou (National Observatory of Athens); Roxanne Suzette Lorilla (National Observatory of Athens); Charalampos Kontoes (National Observatory of Athens)

AAAI FSS 2022 From Ideas to Deployment - A Joint Industry-University Research Effort on Tackling Carbon Storage Challenges with AI
Abstract and authors: (click to expand)

Abstract: Carbon capture and storage (CCS) offers a promising means for significant reductions in greenhouse gas emissions and climate change mitigation at a large scale. Modeling CO2 transport and pressure buildup is central to understanding the responses of geosystems after CO2 injection and assessing the suitability and safety of CO2 storage. However, numerical simulations of geological CO2 storage often suffer from its multi-physics nature and complex non-linear governing equations, and is further complicated by flexible injection designs including changes in injection rates, resulting in formidable computational costs. New ideas have emerged such as data-driven models to tackle such challenges but very few have been fully developed and deployed as reliable tools. With the joint efforts of industry and universities, we are currently working on a new mechanism of fostering cross-disciplinary collaboration, developing, deploying, and scaling data-driven tools for CCS. A deep learning suite that can act as an alternative to CCS variable rate injection simulation will be the first tool developed under this mechanism. Based on the surrogate model, optimal design of injection strategy under pressure buildup constraints will be enabled with machine learning.

Authors: Junjie Xu (Tsinghua University), Jiesi Lei (Tsinghua University), Yang Li (Tsinghua University), Junfan Ren (College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing, China), Jian Qiu (Product and Solution & Website Business Unit, Alibaba Cloud, Hangzhou, Zhejiang, China), Biao Luo (Product and Solution & Website Business Unit, Alibaba Cloud, Hangzhou, Zhejiang, China), Lei Xiao (Product and Solution & Website Business Unit, Alibaba Cloud, Hangzhou, Zhejiang, China) and Wenwen Zhou (Product and Solution & Website Business Unit, Alibaba Cloud, Hangzhou, Zhejiang, China)

AAAI FSS 2022 De-risking Carbon Capture and Sequestration with Explainable CO2 Leakage Detection in Time-lapse Seismic Monitoring Images
Abstract and authors: (click to expand)

Abstract: With the growing global deployment of carbon capture and sequestration technology to combat climate change, monitoring and detection of potential CO2 leakage through existing or storage induced faults are critical to the safe and long-term viability of the technology. Recent work on time-lapse seismic monitoring of CO2 storage has shown promising results in its ability to monitor the growth of the CO2 plume from surface recorded seismic data. However, due to the low sensitivity of seismic imaging to CO2 concentration, additional developments are required to efficiently interpret the seismic images for leakage. In this work, we introduce a binary classification of time-lapse seismic images to delineate CO2 plumes (leakage) using state-of-the-art deep learning models. Additionally, we localize the leakage region of CO2 plumes by leveraging Class Activation Mapping (CAM) methods.

Authors: Huseyin Tuna Erdinc (Georgia Institute of Technology), Abhinav Prakash Gahlot (Georgia Institute of Technology), Ziyi Yin (Georgia Institute of Technology), Mathias Louboutin (Georgia Institute of Technology) and Felix J. Herrmann (Georgia Institute of Technology)

NeurIPS 2021 Accurate and Timely Forecasts of Geologic Carbon Storage using Machine Learning Methods (Papers Track)
Abstract and authors: (click to expand)

Abstract: Carbon capture and storage is one strategy to reduce greenhouse gas emissions. One approach to storing the captured CO2 is to inject it into deep saline aquifers. However, dynamics of the injected CO2 plume is uncertain and the potential for leakage back to the atmosphere must be assessed. Thus, accurate and timely forecasts of CO2 storage via real-time measurements integration becomes very crucial. This study proposes a learning-based, inverse-free prediction method that can accurately and rapidly forecast CO2 movement and distribution with uncertainty quantification based on limited simulation and observation data. The machine learning techniques include dimension reduction, multivariate data analysis, and Bayesian learning. The outcome is expected to provide CO2 storage site operators with an effective tool for real-time decision making.

Authors: Dan Lu (Oak Ridge National Laboratory); Scott Painter (Oak Ridge National Laboratory); Nicholas Azzolina (University of North Dakota); Matthew Burton-Kelly (University of North Dakota)

NeurIPS 2021 A Transfer Learning-Based Surrogate Model for Geological Carbon Storage with Multi-Fidelity Training Data (Papers Track)
Abstract and authors: (click to expand)

Abstract: Geologic carbon storage (GCS) entails injecting large volumes of carbon dioxide (CO2) in deep geologic formations to prevent its release to the atmosphere. Reservoir simulation is widely used in GCS applications to predict subsurface pressure and CO2 saturation. High fidelity numerical models are prohibitively expensive for data assimilation and uncertainty quantification, which require a large number of simulation runs. Deep learning-based surrogate models have shown a great promise to alleviate the high computational cost. However, the training cost is high as thousands of high-fidelity simulations are often necessary for generating the training data. In this work, we explore the use of a transfer learning approach to reduce the training cost. Compared with the surrogate model trained with high-fidelity simulations, our new transfer learning-based model shows comparable accuracy but reduces the training cost by 80%.

Authors: Su Jiang (Stanford University)

NeurIPS 2021 NoFADE: Analyzing Diminishing Returns on CO2 Investment (Papers Track)
Abstract and authors: (click to expand)

Abstract: Climate change continues to be a pressing issue that currently affects society at-large. It is important that we as a society, including the Computer Vision (CV) community take steps to limit our impact on the environment. In this paper, we (a) analyze the effect of diminishing returns on CV methods, and (b) propose a \textit{``NoFADE''}: a novel entropy-based metric to quantify model--dataset--complexity relationships. We show that some CV tasks are reaching saturation, while others are almost fully saturated. In this light, NoFADE allows the CV community to compare models and datasets on a similar basis, establishing an agnostic platform.

Authors: Andre Fu (University of Toronto); Justin B Tran (University of Toronto); Andy Xie (University of Toronto); Jonathan T Spraggett (University of Toronto); Elisa Ding (University of Toronto); Chang-Won Lee (University of Toronto); Kanav Singla (University of Toronto); Mahdi S. Hosseini (University of New Brunswick); Konstantinos N Plataniotis (UofT)

NeurIPS 2021 A hybrid convolutional neural network/active contour approach to segmenting dead trees in aerial imagery (Papers Track)
Abstract and authors: (click to expand)

Abstract: The stability and ability of an ecosystem to withstand climate change is directly linked to its biodiversity. Dead trees are a key indicator of overall forest health, housing one-third of forest ecosystem biodiversity, and constitute 8% of the global carbon stocks. They are decomposed by several natural factors, e.g. climate, insects and fungi. Accurate detection and modeling of dead wood mass is paramount to understanding forest ecology, the carbon cycle and decomposers. We present a novel method to construct precise shape contours of dead trees from aerial photographs by combining established convolutional neural networks with a novel active contour model in an energy minimization framework. Our approach yields superior performance accuracy over state-of-the-art in terms of precision, recall, and intersection over union of detected dead trees. This improved performance is essential to meet emerging challenges caused by climate change (and other man-made perturbations to the systems), particularly to monitor and estimate carbon stock decay rates, monitor forest health and biodiversity, and the overall effects of dead wood on and from climate change.

Authors: Jacquelyn Shelton (Hong Kong Polytechnic University); Przemyslaw Polewski (TomTom Location Technology Germany GmbH); Wei Yao (The Hong Kong Polytechnic University); Marco Heurich (Bavarian Forest National Park)

NeurIPS 2021 Machine Learning in Automating Carbon Sequestration Site Assessment (Proposals Track)
Abstract and authors: (click to expand)

Abstract: Carbon capture and sequestration are viewed as an indispensable component to achieve the Paris Agreement climate goal, i.e., keep the global warming within 2 degrees Celsius from pre-industrial levels. Once captured, most CO2 needs to be stored securely for at least decades, preferably in deep underground geological formations. It is economical to inject and store CO2 near/around a depleted gas/oil reservoir or well, where a geological trap for CO2 with good sealing properties and some minimum infrastructure exist. In this proposal, with our preliminary work, it is shown that Machine Learning tools like Optical Character Recognition and Natural Language Processing can aid in screening and selection of injection sites for CO2 storage, facilitate identification of possible CO2 leakage paths in the subsurface, and assist in locating a depleted gas/oil well suitable for CO2 injection and long-term storage. The automated process based on ML tools can also drastically decrease the decision-making cycle time in site selection and assessment phase by reducing human effort. In the longer term, we expect ML tools like Deep Neural Networks to be utilized in CO2 storage monitoring, injection optimization etc. By injecting CO2 into a trapping geological underground formation in a safe and sustainable manner, the Energy industry can contribute substantially to reducing global warming and achieving the goals of the Paris Agreement by the end of this century.

Authors: Jay Chen (Shell); Ligang Lu (Shell); Mohamed Sidahmed (Shell); Taixu Bai (Shell); Ilyana Folmar (Shell); Puneet Seth (Shell); Manoj Sarfare (Shell); Duane Mikulencak (Shell); Ihab Akil (Shell)

NeurIPS 2021 Machine Learning Speeding Up the Development of Portfolio of New Crop Varieties to Adapt to and Mitigate Climate Change (Proposals Track)
Abstract and authors: (click to expand)

Abstract: Climate change poses serious challenges to achieving food security in a time of a need to produce more food to keep up with the world’s increasing demand for food. There is an urgent need to speed up the development of new high yielding varieties with traits of adaptation and mitigation to climate change. Mathematical approaches, including ML approaches, have been used to search for such traits, leading to unprecedented results as some of the traits, including heat traits that have been long sought-for, have been found within a short period of time.

Authors: Abdallah Bari (OperAI Canada - Operational AI); Hassan Ouabbou (INRA); Abderrazek Jilal (INRA); Frederick Stoddard (University of Helsinki); Mikko Sillanpää (University of Oulu); Hamid Khazaei (World Vegetable Center)

NeurIPS 2021 Optimization of Agricultural Management for Soil Carbon Sequestration based on Deep Reinforcement Learning and Large-Scale Simulations (Proposals Track)
Abstract and authors: (click to expand)

Abstract: Soil carbon sequestration in croplands has tremendous potential to help mitigate climate change; however, it is challenging to develop the optimal management practices for maximization of the sequestered carbon as well as the crop yield. This project aims to develop an intelligent agricultural management system using deep reinforcement learning (RL) and large-scale soil and crop simulations. To achieve this, we propose to build a simulator to model and simulate the complex soil-water-plant-atmosphere interaction. By formulating the management decision as an RL problem, we can leverage the state-of-the-art algorithms to train management policies through extensive interactions with the simulated environment. The trained policies are expected to maximize the stored organic carbon while maximizing the crop yield in the presence of uncertain weather conditions. The whole system will be tested using data of soil and crops in both mid-west of the United States and the central region of Portugal. The proposed research will impact food security and climate change, two of the most significant challenges currently facing humanity.

Authors: Jing Wu (University of Illinois Urbana-Champaign); Pan Zhao (University of Illinois Urbana-Champaign); Ran Tao (University of Illinois Urbana-Champaign); Naira Hovakimyan (UIUC); Guillermo Marcillo (University of Illinois at Urbana-Champaign); Nicolas Martin (University of Illinois at Urbana-Champaign); Carla Ferreira (Royal Institute of Technology); Zahra Kalantari (Royal Institute of Technology); Jennifer Hobbs (IntelinAir Inc.)

NeurIPS 2021 Predicting Cascading Failures in Power Systems using Graph Convolutional Networks (Proposals Track)
Abstract and authors: (click to expand)

Abstract: Worldwide targets are set for the increase of renewable power generation in electricity networks on the way to combat climate change. Consequently, a secure power system that can handle the complexities resulted from the increased renewable power integration is crucial. One particular complexity is the possibility of cascading failures — a quick succession of multiple component failures that takes down the system and might also lead to a blackout. Viewing the prediction of cascading failures as a binary classification task, we explore the efficacy of Graph Convolution Networks (GCNs), to detect the early onset of a cascading failure. We perform experiments based on simulated data from a benchmark IEEE test system. Our preliminary findings show that GCNs achieve higher accuracy scores than other baselines which bodes well for detecting cascading failures. It also motivates a more comprehensive study of graph-based deep learning techniques for the current problem.

Authors: Tabia Ahmad (University of Strathclyde); Yongli Zhu (Texas A&M Universersity); Panagiotis Papadopoulos (University of Strathclyde)

NeurIPS 2021 Open Catalyst Project: An Introduction to ML applied to Molecular Simulations (Tutorials Track)
Abstract and authors: (click to expand)

Abstract: As the world continues to battle energy scarcity and climate change, the future of our energy infrastructure is a growing challenge. Renewable energy technologies offer the opportunity to drive efficient carbon-neutral means for energy storage and generation. Doing so, however, requires the discovery of efficient and economic catalysts (materials) to accelerate associated chemical processes. A common approach in discovering high performance catalysts is using molecular simulations. Specifically, each simulation models the interaction of a catalyst surface with molecules that are commonly seen in electrochemical reactions. By predicting these interactions accurately, the catalyst's impact on the overall rate of a chemical reaction may be estimated. The Open Catalyst Project (OCP) aims to develop new ML methods and models to accelerate the catalyst simulation process for renewable energy technologies and improve our ability to predict properties across catalyst composition. The initial release of the Open Catalyst 2020 (OC20) dataset presented the largest open dataset of molecular combinations, spanning 55 unique elements and over 130M+ data points. We will present a comprehensive tutorial of the Open Catalyst Project repository, including (1) Accessing & visualizing the dataset, (2) Overview of the various tasks, (3) Training graph neural network (GNN) models, (4) Developing your own model for OCP, (5) Running ML-driven simulations, and (6) Visualizing the results. Primary tools include PyTorch and PyTorch Geometric. No background in chemistry is assumed. Following this tutorial we hope to better equip attendees with a basic understanding of the data and repository.

Authors: Muhammed Shuaibi (Carnegie Mellon University); Anuroop Sriram (Facebook); Abhishek Das (Facebook AI Research); Janice Lan (Facebook AI Research); Adeesh Kolluru (Carnegie Mellon University); Brandon Wood (NERSC); Zachary Ulissi (Carnegie Mellon University); Larry Zitnick (Facebook AI Research)

ICML 2021 Urban Tree Species Classification Using Aerial Imagery (Papers Track)
Abstract and authors: (click to expand)

Abstract: Urban trees help regulate temperature, reduce energy consumption, improve urban air quality, reduce wind speeds, and mitigating the urban heat island effect. Urban trees also play a key role in climate change mitigation and global warming by capturing and storing atmospheric carbon-dioxide which is the largest contributor to greenhouse gases. Automated tree detection and species classification using aerial imagery can be a powerful tool for sustainable forest and urban tree management. Hence, This study first offers a pipeline for generating labelled dataset of urban trees using Google Map's aerial images and then investigates how state of the art deep Convolutional Neural Network models such as VGG and ResNet handle the classification problem of urban tree aerial images under different parameters. Experimental results show our best model achieves an average accuracy of 60% over 6 tree species.

Authors: Emily Waters (Anglia Ruskin University); Mahdi Maktabdar Oghaz (Anglia Ruskin University); Lakshmi Babu Saheer (Anglia Ruskin University)

ICML 2021 Improving Image-Based Characterization of Porous Media with Deep Generative Models (Papers Track)
Abstract and authors: (click to expand)

Abstract: Micro- and nanoscale imaging are important for characterizing subsurface formations for carbon sequestration, shale gas recovery, and hydrogen storage. Common imaging techniques, however, are often sample-destructive, expensive, require high levels of expertise, or only acquire planar data. The resulting image datasets therefore may not allow for a representative estimation of rock properties. In this work, we address these challenges in image-based characterization of porous media using deep generative models. We present a machine learning workflow for characterizing porous media from limited imaging data. We develop methods for 3D image volume translation and synthesis from 2D training data, apply this method to grayscale and multimodal image datasets of sandstones and shales, and simulate flow through the generated volumes. Results show that the proposed image reconstruction and generation approaches produce realistic pore-scale 3D representations of rock samples using only 2D training data. The models proposed here expand our capabilities for characterization of rock samples and enable new understanding of pore-scale storage and recovery processes.

Authors: Timothy Anderson (Stanford University); Kelly Guan (Stanford University); Bolivia Vega (Stanford University); Laura Froute (Stanford University); Anthony Kovscek (Stanford University)

ICML 2021 Quantification of Carbon Sequestration in Urban Forests (Papers Track)
Abstract and authors: (click to expand)

Abstract: Vegetation, trees in particular, sequester carbon by absorbing carbon dioxide from the atmosphere, however, the lack of efficient quantification methods of carbon stored in trees renders it difficult to track the process. Here we present an approach to estimate the carbon storage in trees based on fusing multispectral aerial imagery and LiDAR data to identify tree coverage, geometric shape, and tree species, which are crucial attributes in carbon storage quantification. We demonstrate that tree species information and their three-dimensional geometric shapes can be estimated from remote imagery in order to calculate the tree's biomass. Specifically, for Manhattan, New York City, we estimate a total of 52,000 tons of carbon sequestered in trees.

Authors: Levente Klein (IBM Research); Wang Zhou (IBM Research); Conrad M Albrecht (IBM Research)

ICML 2021 Technical support project and analysis of the dissemination of carbon dioxide and methane from Lake Kivu in nature and its impact on biodiversity in the Great Lakes region since 2012 (Proposals Track)
Abstract and authors: (click to expand)

Abstract: Straddling the Democratic Republic of the Congo and Rwanda, at an altitude of 1,460 m, Lake Kivu is one of the ten great lakes in Africa, alongside the main ones that are Victoria and Tanganyika. Kivu contains very high concentrations of gases (carbon dioxide and methane in particular), produced by volcanic activity in the region and the decomposition of organic matter. It has 2,700 km2 of this body of water, a depth that approaches 500 meters in places. It is estimated to contain 60 billion cubic meters of dissolved methane and about 300 billion cubic meters of carbon dioxide accumulated over time. Lake Kivu, located north of Lake Tanganyika and contains a very high amount of carbon dioxide and methane. Carbon dioxide (CO2) and methane (CH4) are both greenhouse gases that affect how well the planet works. The first stays in the atmosphere for a hundred years while the second stays there only for a dozen years. The effect of the dissemination of these in nature prompts me to collect as much data as possible on their circulation and to suggest possible solutions that are consistent with the Paris Agreement. In addition, many wastes come from households and/or small industries in the towns of Bukavu, Goma for the DRC and those of Gyangugu and Gisenyi for Rwanda constitute a high source of CH4 emissions which also contribute to global warming. The exploitation of methane expected in the near future is an additional threat to the sustainable development of ecosystem resources. For various reasons, Lake Kivu constitutes an adequate model for studying the responses of large tropical lakes to changes linked to human activity: indeed, despite its physical and biogeochemical peculiarities, the limnological and ecological processes of its pelagic waters are subject to the same forcings as in other large lakes in the same region, as shown by recent studies.

Authors: Bulonze Chibaderhe (FEMAC Asbl)

ICML 2021 MethaNet - an AI-driven approach to quantifying methane point-source emission from high-resolution 2-D plume imagery (Proposals Track)
Abstract and authors: (click to expand)

Abstract: Methane (CH4) is one of the most powerful anthropogenic greenhouse gases with a significant impact on global warming trajectory and tropospheric air quality. Quantifying an emission rate of observed CH4 plumes from aerial or satellite images is a critical step for understanding the local distributions and subsequently prioritizing mitigation target sites. However, there exists no method that can reliably predict emission rates from detected plumes in real-time without ancillary data. Here, we trained a convolutional neural network model, called MethaNet, to predict methane point-source emission directly from high-resolution 2-D plume images without relying on other local measurements such as background wind speeds. Our results support the basis for the applicability of using deep learning techniques to quantify CH4 point sources in an automated manner over large geographical areas. MethaNet opens the way for real-time monitoring systems, not only for present and future airborne field campaigns but also for upcoming space-based observations in this decade.

Authors: Siraput Jongaramrungruang (Caltech)

ICML 2021 Tackling the Overestimation of Forest Carbon with Deep Learning and Aerial Imagery (Proposals Track)
Abstract and authors: (click to expand)

Abstract: Forest carbon offsets are increasingly popular and can play a significant role in financing climate mitigation, forest conservation, and reforestation. Measuring how much carbon is stored in forests is, however, still largely done via expensive, time-consuming, and sometimes unaccountable field measurements. To overcome these limitations, many verification bodies are leveraging machine learning (ML) algorithms to estimate forest carbon from satellite or aerial imagery. Aerial imagery allows for tree species or family classification, which improves on the satellite imagery-based forest type classification. However, aerial imagery is significantly more expensive to collect and it is unclear by how much the higher resolution improves the forest carbon estimation. This proposal paper describes the first systematic comparison of forest carbon estimation from aerial imagery, satellite imagery, and “ground-truth“ field measurements via deep learning-based algorithms for a tropical reforestation project. Our initial results show that forest carbon estimates from satellite imagery can overestimate above-ground biomass by more than 10-times for tropical reforestation projects. The significant difference between aerial and satellite-derived forest carbon measurements shows the potential for aerial imagery-based ML algorithms and raises the importance to extend this study to a global benchmark between options for carbon measurements.

Authors: Gyri Reiersen (TUM); David Dao (ETH Zurich); Björn Lütjens (MIT); Konstantin Klemmer (University of Warwick); Xiaoxiang Zhu (Technical University of Munich,Germany); Ce Zhang (ETH)

ICML 2021 Enhancing Laboratory-scale Flow Imaging of Fractured Geological Media with Deep Learning Super Resolution (Proposals Track)
Abstract and authors: (click to expand)

Abstract: Injection into deep geological formations is a promising approach for the utilization, sequestration, and removal from the atmosphere of CO2 emissions. Laboratory experiments are essential to characterize how CO2 flows and reacts in various types of geological media. We reproduce such dynamic injection processes while imaging using Computed Tomography (CT) at sufficient temporal resolution to visualize changes in the flow field. The resolution of CT, however, is on the order of 100's of micrometers and insufficient to characterize fine-scale reaction-induced alterations to micro-fractures. Super resolution deep learning is, therefore, an essential tool to improve spatial resolution of dynamic CT images. We acquired and processed pairs of multi-scale low- and high-resolution CT rock images. We also show the performance of our baseline model on fractured rock images using peak signal to noise ratio and structural similarity index. Coupling dynamic CT imaging with deep learning results in visualization with enhanced spatial resolution of about a factor of 4 thereby enabling improved interpretation.

Authors: Manju Pharkavi Murugesu (Stanford University); Timothy Anderson (Stanford University); Niccolo Dal Santo (MathWorks, Inc.); Vignesh Krishnan (The MathWorks Ltd); Anthony Kovscek (Stanford University)

ICML 2021 Machine Learning for Climate Change: Guiding Discovery of Sorbent Materials for Direct Air Capture of CO2 (Proposals Track)
Abstract and authors: (click to expand)

Abstract: The global climate crisis requires interdisciplinary collaboration. The same is true for making significant strides in materials discovery for direct air capture (DAC) of carbon dioxide (CO2). DAC is an emerging technology that captures CO2 directly from the atmosphere and it is part of the solution to achieving carbon neutrality by 2050. The proposed project is a collaborative effort that tackles climate change by using machine learning to guide scientists to novel, optimized, advanced sorbent materials for direct air capture of CO2. Immediate impacts will include high throughput machine learning tools for developing new, cost-effective CO2 sorption materials, and continued, expanded collaborations with potential domestic and international stakeholders.

Authors: Diana L Ortiz-Montalvo (NIST); Aaron Gilad Kusne (NIST); Austin McDannald (NIST); Daniel Siderius (NIST); Kamal Choudhary (NIST); Taner Yildirim (NIST)

NeurIPS 2020 Mangrove Ecosystem Detection using Mixed-Resolution Imagery with a Hybrid-Convolutional Neural Network (Papers Track)
Abstract and authors: (click to expand)

Abstract: Mangrove forests are rich in biodiversity and are a large contributor to carbon sequestration critical in the fight against climate change. However, they are currently under threat from anthropogenic activities, so monitoring their health, extent, and productivity is vital to our ability to protect these important ecosystems. Traditionally, lower resolution satellite imagery or high resolution unmanned air vehicle (UAV) imagery has been used independently to monitor mangrove extent, both offering helpful features to predict mangrove extent. To take advantage of both of these data sources, we propose the use of a hybrid neural network, which combines a Convolutional Neural Network (CNN) feature extractor with a Multilayer-Perceptron (MLP), to accurately detect mangrove areas using both medium resolution satellite and high resolution drone imagery. We present a comparison of our novel Hybrid CNN with algorithms previously applied to mangrove image classification on a data set we collected of dwarf mangroves from consumer UAVs in Baja California Sur, Mexico, and show a 95\% intersection over union (IOU) score for mangrove image classification, outperforming all our baselines.

Authors: Dillon Hicks (Engineers for Exploration); Ryan Kastner (University of California San Diego); Curt Schurgers (University of California San Diego); Astrid Hsu (University of California San Diego); Octavio Aburto (University of California San Diego)

NeurIPS 2020 Residue Density Segmentation for Monitoring and Optimizing Tillage Practices (Proposals Track)
Abstract and authors: (click to expand)

Abstract: "No-till" and cover cropping are often identified as the leading simple, best management practices for carbon sequestration in agriculture. However, the root of the problem is more complex, with the potential benefits of these approaches depending on numerous factors including a field's soil type(s), topography, and management history. Instead of using computer vision approaches to simply classify a field as till vs. no-till, we instead seek to identify the degree of residue coverage across a field through a probabilistic deep learning segmentation approach to enable more accurate analysis of carbon holding potential and realization. This approach will not only provide more precise insights into currently implemented practices, but also enable a more accurate identification process of fields with the greatest potential for adopting new practices to significantly impact carbon sequestration in agriculture.

Authors: Jennifer Hobbs (IntelinAir); Ivan A Dozier (IntelinAir); Naira Hovakimyan (UIUC)

NeurIPS 2020 Expert-in-the-loop Systems Towards Safety-critical Machine Learning Technology in Wildfire Intelligence (Proposals Track)
Abstract and authors: (click to expand)

Abstract: With the advent of climate change, wildfires are becoming more frequent and severe across several regions worldwide. To prevent and mitigate its effects, wildfire intelligence plays a pivotal role, e.g. to monitor the evolution of wildfires and for early detection in high-risk areas such as wildland-urban-interface regions. Recent works have proposed deep learning solutions for fire detection tasks, however the current limited databases prevent reliable real-world deployments. We propose the development of expert-in-the-loop systems that combine the benefits of semi-automated data annotation with relevant domain knowledge expertise. Through this approach we aim to improve the data curation process and contribute to the generation of large-scale image databases for relevant wildfire tasks and empower the application of machine learning techniques in wildfire intelligence in real scenarios.

Authors: Maria João Sousa (IDMEC, Instituto Superior Técnico, Universidade de Lisboa); Alexandra Moutinho (IDMEC, Instituto Superior Técnico, Universidade de Lisboa); Miguel Almeida (ADAI, University of Coimbra)

NeurIPS 2020 Artificial Intelligence, Machine Learning and Modeling for Understanding the Oceans and Climate Change (Proposals Track)
Abstract and authors: (click to expand)

Abstract: These changes will have a drastic impact on almost all forms of life in the ocean with further consequences on food security, ecosystem services in coastal and inland communities. Despite these impacts, scientific data and infrastructures are still lacking to understand and quantify the consequences of these perturbations on the marine ecosystem. Understanding this phenomenon is not only an urgent but also a scientifically demanding task. Consequently, it is a problem that must be addressed with a scientific cohort approach, where multi-disciplinary teams collaborate to bring the best of different scientific areas. In this proposal paper, we describe our newly launched four-years project focused on developing new artificial intelligence, machine learning, and mathematical modeling tools to contribute to the understanding of the structure, functioning, and underlying mechanisms and dynamics of the global ocean symbiome and its relation with climate change. These actions should enable the understanding of our oceans and predict and mitigate the consequences of climate change.

Authors: Nayat Sánchez Pi (Inria); Luis Martí (Inria); André Abreu (Fountation Tara Océans); Olivier Bernard (Inria); Colomban de Vargas (CNRS); Damien Eveillard (Univ. Nantes); Alejandro Maass (CMM, U. Chile); Pablo Marquet (PUC); Jacques Sainte-Marie (Inria); Julien Salomin (Inria); Marc Schoenauer (INRIA); Michele Sebag (LRI, CNRS, France)

ICLR 2020 TrueBranch: Metric Learning-based Verification of Forest Conservation Projects (Proposals Track) Best Proposal Award
Abstract and authors: (click to expand)

Abstract: International stakeholders increasingly invest in offsetting carbon emissions, for example, via issuing Payments for Ecosystem Services (PES) to forest conservation projects. Issuing trusted payments requires a transparent monitoring, reporting, and verification (MRV) process of the ecosystem services (e.g., carbon stored in forests). The current MRV process, however, is either too expensive (on-ground inspection of forest) or inaccurate (satellite). Recent works propose low-cost and accurate MRV via automatically determining forest carbon from drone imagery, collected by the landowners. The automation of MRV, however, opens up the possibility that landowners report untruthful drone imagery. To be robust against untruthful reporting, we propose TrueBranch, a metric learning-based algorithm that verifies the truthfulness of drone imagery from forest conservation projects. TrueBranch aims to detect untruthfully reported drone imagery by matching it with public satellite imagery. Preliminary results suggest that nominal distance metrics are not sufficient to reliably detect untruthfully reported imagery. TrueBranch leverages a method from metric learning to create a feature embedding in which truthfully and untruthfully collected imagery is easily distinguishable by distance thresholding.

Authors: Simona Santamaria (ETH Zurich); David Dao (ETH Zurich); Björn Lütjens (MIT); Ce Zhang (ETH)

NeurIPS 2019 Reducing Inefficiency in Carbon Auctions with Imperfect Competition (Papers Track)
Abstract and authors: (click to expand)

Abstract: We study auctions for carbon licenses, a policy tool used to control the social cost of pollution. Each identical license grants the right to produce a unit of pollution. Each buyer (i.e., firm that pollutes during the manufacturing process) enjoys a decreasing marginal value for licenses, but society suffers an increasing marginal cost for each license distributed. The seller (i.e., the government) can choose a number of licenses to auction, and wishes to maximize societal welfare: the total economic value of the buyers minus the social cost. Motivated by emission license markets deployed in practice, we focus on uniform price auctions with a price floor and/or price ceiling. The seller has distributional information about the market, and their goal is to tune the auction parameters to maximize expected welfare. The target benchmark is the maximum expected welfare achievable by any such auction under truth-telling behavior. Unfortunately, the uniform price auction is not truthful, and strategic behavior can significantly reduce (even below zero) the welfare of a given auction configuration. We use tools from theoretical computer science and algorithmic game theory to address the strategic vulnerabilities of these auctions. We describe a subclass of "safe-price" auctions for which the welfare at any Bayes-Nash equilibrium will approximate the welfare under truth-telling behavior. We then show that the better of a safe-price auction, or a truthful auction that allocates licenses to only a single buyer, will approximate the target benchmark. In particular, we show how to choose a number of licenses and a price floor so that the worst-case welfare, at any equilibrium, is a constant approximation to the best achievable welfare under truth-telling after excluding the welfare contribution of a single buyer. This provides a concrete recommendation for how to set the auction parameters in practice in order to achieve guarantees, even in the face of strategic participants.

Authors: Kira Goldner (Columbia University); Nicole Immorlica (Microsoft Research); Brendan Lucier (Microsoft Research New England)

NeurIPS 2019 Machine Learning-based Estimation of Forest Carbon Stocks to increase Transparency of Forest Preservation Efforts (Proposals Track)
Abstract and authors: (click to expand)

Abstract: An increasing amount of companies and cities plan to become CO2-neutral, which requires them to invest in renewable energies and carbon emission offsetting solutions. One of the cheapest carbon offsetting solutions is preventing deforestation in developing nations, a major contributor in global greenhouse gas emissions. However, forest preservation projects historically display an issue of trust and transparency, which drives companies to invest in transparent, but expensive air carbon capture facilities. Preservation projects could conduct accurate forest inventories (tree diameter, species, height etc.) to transparently estimate the biomass and amount of stored carbon. However, current rainforest inventories are too inaccurate, because they are often based on a few expensive ground-based samples and/or low-resolution satellite imagery. LiDAR-based solutions, used in US forests, are accurate, but cost-prohibitive, and hardly-accessible in the Amazon rainforest. We propose accurate and cheap forest inventory analyses through Deep Learning-based processing of drone imagery. The more transparent estimation of stored carbon will create higher transparency towards clients and thereby increase trust and investment into forest preservation projects.

Authors: Björn Lütjens (MIT); Lucas Liebenwein (Massachusetts Institute of Technology); Katharina Kramer (Massachusetts Institute of Technology)

NeurIPS 2019 Optimizing trees for carbon sequestration (Proposals Track)
Abstract and authors: (click to expand)

Abstract: In the IPCC models of climate change mitigation, most scenarios ensuring less than 2ºC of warming assume deployment of some form of “negative emissions technology,” alongside dramatic reductions in emissions and other major societal changes. Proposed negative emissions technologies include bioenergy with carbon capture and storage, enhanced weathering of minerals, direct air capture, and afforestation / reforestation. Among these technologies, the use of trees for carbon sequestration through photosynthesis is well established, requires little energy, has comparable sequestration potential, and can be deployed at scale for relatively low cost. The primary constraint on using trees for sequestration is land, which is limited and increasingly subject to competitive demand. Thus, maximizing the capacity and long-term stability of every hectare used for planting would bolster the critical role of trees in a broad negative emissions strategy. Here, we propose to build a new data resource and optimization tool that leverages modern measurements and machine learning to help address this need.

Authors: Jeremy Freeman

ICML 2019 Predicting CO2 Plume Migration using Deep Neural Networks (Research Track)
Abstract and authors: (click to expand)

Abstract: Carbon capture and sequestration (CCS) is an essential climate change mitigation technology for achieving the 2 degree C target. Numerical simulation of CO2 plume migration in the subsurface is a prerequisite to effective CCS projects. However, stochastic high spatial resolution simulations are currently limited by computational resources. We propose a deep neural network approach to predict the CO2 plume migration in high dimensional systems with complex geology. Upon training, the network is able to give accurate predictions that are 6 orders of magnitude faster than traditional numerical simulators. This approach can be easily adopted to history-matching and uncertainty analysis problems to support the scale-up of CCS deployment.

Authors: Gege Wen (Stanford University)

ICML 2019 Harness the Power of Artificial intelligence and -Omics to Identify Soil Microbial Functions in Climate Change Projection (Ideas Track)
Abstract and authors: (click to expand)

Abstract: Contemporary Earth system models (ESMs) omit one of the significant drivers of the terrestrial carbon cycle, soil microbial communities. Soil microbial community not only directly emit greenhouse gasses into the atmosphere through the respiration process, but also release diverse enzymes to catalyze the decomposition of soil organic matter and determine nutrient availability for aboveground vegetation. Therefore, soil microbial community control over terrestrial carbon dynamics and their feedbacks to climate. Currently, inadequate representation of soil microbial communities in ESMs has introduced significant uncertainty in current terrestrial carbon-climate feedbacks. Mitigation of this uncertainty requires to identify functions, diversity, and environmental adaptation of soil microbial communities under global climate change. The revolution of -omics technology allows high throughput quantification of diverse soil enzymes, enabling large-scale studies of microbial functions in climate change. Such studies may lead to revolutionary solutions to predicting microbial-mediated climate-carbon feedbacks at the global scale based on gene-level environmental adaptation strategies of the microbial community. A key initial step in this direction is to identify the biogeography and environmental adaptation of soil enzyme functions based on the massive amount of data generated by -omics technologies. Here we propose to make this step. Artificial intelligence is a powerful, ideal tool for this leap forward. Our project is to integrate Artificial intelligence technologies and global -omics data to represent climate controls on microbial enzyme functions and mapping biogeography of soil enzyme functional groups at global scale. This outcome of this study will allow us to improve the representation of microbial function in earth system modeling and mitigate uncertainty in current climate projection.

Authors: Yang Song (Oak Ridge National Lab); Dali Wang (Oak Ridge National Lab); Melanie Mayes (Oak Ridge National Lab)