Forests
Blog Posts
Webinars
Innovation Grants
Talks
-
ICLR 2020
- April 28: Agriculture, Forestry, and Other Land Use (AFOLU) Day
Workshop Papers
Venue | Title |
---|---|
ICLR 2024 |
Mapping Land Naturalness from Sentinel-2 using Deep Contextual and Geographical Priors
(Papers Track)
Abstract and authors: (click to expand)Abstract: In recent decades, the causes and consequences of climate change have accelerated, affecting our planet on an unprecedented scale. This change is closely tied to the ways in which humans alter their surroundings. As our actions continue to impact natural areas, using satellite images to see and measure these effects has become crucial for understanding and fighting climate change. Aiming to map land naturalness on the continuum of modern human pressure, we develop a multi-modal supervised deep learning framework that addresses the unique challenges of satellite data and the task at hand. We incorporate contextual and geographical priors. These priors are represented by corresponding coordinate information and broader contextual information including and surrounding the immediate patch to be predicted. Our framework improves the model's predictive performance to map land naturalness from a given Sentinel-2 data, a multi-spectral optical satellite imagery. Recognizing that our protective measures are as effective as our grasp of the ecosystem, quantifying naturalness serves as a crucial step towards enhancing our environmental stewardship. Authors: Burak Ekim (University of the Bundeswehr); Michael Schmitt (University of the Bundeswehr Munich) |
ICLR 2024 |
Deep Gaussian Processes and inversion for decision support in model-based climate change mitigation and adaptation problems
(Papers Track)
Abstract and authors: (click to expand)Abstract: To inform their decisions, policy makers often rely on models developed by researchers that are computationally intensive and complex and that frequently run on High Performance Computers (HPC). These decision-support models are not used directly by deciders and the results of these models tend to be presented by experts as a limited number of potential scenarios that would result from a limited number of potential policy choices. Machine learning models such as Deep Gaussian Processes (DGPs) can be used to radically re-define how decision makers can use models by creating a ‘surrogate model’ or ‘emulator’ of the original model. Surrogate models can then be embedded into apps that decisions makers can use to directly explore a vast array of policy options corresponding to potential target outcomes (model inversion). To illustrate the mechanism, we give an example of application that is envisaged as part of the UK government’s Net Zero strategy. To achieve Net Zero CO2 emissions by 2050, the UK government is considering multiple options that include planting trees to capture carbon. However, the amount of CO2 captured by the trees depend on a large number of factors that include climate conditions, soil type, soil carbon, tree type, ... Depending on these factors the net balance of carbon removal after planting trees may not necessarily be positive. Hence, choosing the right place to plant the right tree is very important. A decision-helping model has been developed to tackle this problem. For a given policy input, the model outputs its impact in terms of CO2 sequestration, biodiversity and other ecosystem services. We show how DGPs can be used to create a surrogate model of this original afforestation model and how these can be embedded into an R shiny app that can then be directly used by decision makers. Authors: bertrand nortier (University of Exeter); daniel williamson (University of Exeter); mattia mancini (University of Exeter); amy binner (University of Exeter); brett day (University of Exeter); ian bateman (University of Exeter) |
ICLR 2024 |
Neural Tree Reconstruction for the Open Forest Observatory
(Papers Track)
Abstract and authors: (click to expand)Abstract: The Open Forest Observatory (OFO) is a collaboration across universities and other partners to make low-cost forest mapping accessible to ecologists, land managers, and the general public. The OFO is building both a database of geospatial forest data as well as open-source methods and tools for forest mapping by un- crewed aerial vehicle. Such data are useful for a variety of climate applications including prioritizing reforestation efforts, informing wildfire hazard reduction, and monitoring carbon sequestration. In the current iteration of the OFO’s forest map database, 3D tree maps are created using classical structure-from-motion techniques. This approach is prone to artifacts, lacks detail, and has particular difficulty on the forest floor where the input data (overhead imagery) has limited visibility. These reconstruction errors can potentially propagate to the down- stream scientific tasks (e.g. a wildfire simulation.) Advances in 3D reconstruction, including methods like Neural Radiance Fields (NeRF), produce higher quality results that are more robust to sparse views and support data-driven priors. We explore ways to incorporate NeRFs into the OFO dataset, outline future work to support even more state-of-the-art 3D vision models, and describe the importance of high-quality 3D reconstructions for forestry applications. Authors: Marissa Ramirez de Chanlatte (UC Berkeley); Arjun Rewari (Darrell Group, Berkeley AI Research Lab); Trevor Darrell (UC Berkeley); Derek Young (University of California Davis) |
ICLR 2024 |
One Prompt Fits All: Visual Prompt-Tuning for Remote Sensing Segmentation
(Tutorials Track)
Audience Choice
Abstract and authors: (click to expand)Abstract: Image segmentation is crucial in climate change research for analyzing satellite imagery. This technique is vital for ecosystems mapping, natural disasters assessment, and urban and agricultural planning. The advent of vision-based foundational models like the Segment Anything Model (SAM) opens new avenues in climate research and remote sensing (RS). SAM can perform segmentation tasks on any object from manually-crafted prompts. However, the efficacy of SAM largely depends on the quality of these prompts. This issue is particularly pronounced with RS data, which are inherently complex. To use SAM for accurate segmentation at scale for RS, one would need to create complex prompts for each image, which typically involves selecting dozens of points. To address this, we introduce Prompt-Tuned SAM (PT-SAM), a method that minimizes the need for manual input through a trainable, lightweight prompt embedding. This embedding captures key semantic information for specific objects of interest that would be applicable to unseen images. Our approach merges the zero-shot generalization capabilities of the pre-trained SAM model with supervised learning. Importantly, the training process for the prompt embedding not only has minimal hardware requirements, allowing it to be conducted on a CPU, but it also requires only a small dataset. With PT-SAM, image segmentation on RS data can be performed at scale without human intervention, achieving accuracies comparable to those of human-designed prompts with SAM. For example, PT-SAM can be used for analyzing forest cover across vast areas, a key factor in understanding the impact of human activities on forests. Its capability to segment a multitude of images makes it ideal for monitoring widespread land-cover changes, providing deeper insights into urbanization. This tutorial will explore how to train and utilize PT-SAM for large-scale segmentation tasks, specifically focusing on training embeddings that capture forests, and buildings. Authors: Marshall Wang (Vector Institute); John Willes (Vector Institute); Deval Pandya (Vector Institute) |
NeurIPS 2023 |
Can Deep Learning help to forecast deforestation in the Amazonian Rainforest?
(Papers Track)
Abstract and authors: (click to expand)Abstract: Deforestation is a major driver of climate change. To mitigate deforestation, carbon offset projects aim to protect forest areas at risk. However, existing literature shows that most projects have substantially overestimated the risk of deforestation, thereby issuing carbon credits without equivalent emissions reductions. In this study, we examine if the spread of deforestation can be predicted ex-ante using Deep Learning (DL) models. Our input data includes past deforestation development, slope information, land use, and other terrain- and soil-specific covariates. Testing predictions 1-year ahead, we find that our models only achieve low levels of predictability. For pixel-wise classification at a 30 m resolution, our models achieve an F1 score of 0.263. Only when substantially simplifying the task to predicting if any level of deforestation occurs within a 1.5 km squared tile, the model results improve to a moderate performance (F1: 0.608). We conclude that, based on our input data, deforestation cannot be predicted accurately enough to justify the ex-ante issuance of carbon credits for forest conservation projects. As main challenges, there is the extreme class imbalance between pixels that are deforested (minority) and not deforested (majority) as well as the omittance of social, political, and economic drivers of deforestation. Authors: Tim Engelmann (ETH Zurich); Malte Toetzke (ETH Zurich) |
NeurIPS 2023 |
Discovering Effective Policies for Land-Use Planning
(Papers Track)
Best Pathway to Impact
Abstract and authors: (click to expand)Abstract: How areas of land are allocated for different uses, such as forests, urban, and agriculture, has a large effect on carbon balance, and therefore climate change. Based on available historical data on changes in land use and a simulation of carbon emissions/absorption, a surrogate model can be learned that makes it possible to evaluate the different options available to decision-makers efficiently. An evolutionary search process can then be used to discover effective land-use policies for specific locations. Such a system was built on the Project Resilience platform and evaluated with the Land-Use Harmonization dataset and the BLUE simulator. It generates Pareto fronts that trade off carbon impact and amount of change customized to different locations, thus providing a potentially useful tool for land-use planning. Authors: Risto Miikkulainen (UT Austin; Cognizant Technology Solutions); Olivier Francon (Cognizant AI Labs); Daniel Young (Cognizant AI Labs); Babak Hodjat (Cognizant AI Labs); Hugo Cunha (Cognizant AI Labs); Jacob Bieker (Open Climate Fix) |
NeurIPS 2023 |
Probabilistic land cover modeling via deep autoregressive models
(Papers Track)
Abstract and authors: (click to expand)Abstract: Land use and land cover (LULC) modeling is a challenging task due to long-range dependencies between geographic features and distinct spatial patterns related in topography, ecology, and human development. We explore the usage of a modified Pixel Constrained CNN as applied to inpainting for categorical image data from the National Land Cover Database for producing a diverse set of land use counterfactual scenarios. We find that this approach is effective for producing a distribution of realistic image completions in certain masking configurations. However, the resulting distribution is not well-calibrated in terms of spatial summary statistics commonly used with LULC data and exhibits substantial underdispersion. Authors: Christopher Krapu (Duke University); Ryan Calder (Virginia Tech); Mark Borsuk (Duke University) |
ICLR 2023 |
An automatic mobile approach for Tree DBH Estimation Using a Depth Map and a Regression Convolutional Neural Network
(Papers Track)
Abstract and authors: (click to expand)Abstract: Carbon credit programs finance projects to reduce emissions, remove pollutants, improve livelihoods, and protect natural ecosystems. Ensuring the quality and integrity of such projects is essential to their success. One of the most important variables used in nature-based solutions to measure carbon sequestration is the diameter at breast height (DBH) of trees. In this paper, we propose an automatic mobile computer vision method to estimate the DBH of a tree using a single depth map on a smartphone, along with our created dataset DepthMapDBH2023. We successfully demonstrated that this dataset paired with a lightweight regression convolutional neural network is able to accurately estimate the DBH of trees distinct in appearance, shape, number of tree forks, tree density and crowding, and vine presence. Automation of these measurements will help crews in the field who are collecting data for forest inventories. Gathering as much on-the-ground data as possible is required to ensure the transparency of carbon credit projects. Access to high-quality datasets of manual measurements helps improve biomass models which are widely used in the field of ecological simulation. The code used in this paper will be publicly available on Github and the dataset on Kaggle. Authors: Margaux Masson-Forsythe (Earthshot Labs); Margaux Masson-Forsythe (Earthshot Labs) |
ICLR 2023 |
BurnMD: A Fire Projection and Mitigation Modeling Dataset
(Papers Track)
Abstract and authors: (click to expand)Abstract: Today's fire projection modeling tools struggle to keep up with the rapid rate and increasing severity of climate change, leaving disaster managers dependent on tools which are increasingly unrepresentative of complex interactions between fire behavior, environmental conditions, and various mitigation options. This has consequences for equitably minimizing wildfire risks to life, property, ecology, cultural heritage, and public health. Fortunately, decades of data exist for fuel populations, weather conditions, and outcomes of significant fires in the American West and globally. The fire management community faces a lack of data standardization and validation among many competing fire models. Likewise, the machine learning community lacks curated datasets and benchmarks to develop solutions necessary to generate impact in this space. We present a novel dataset composed of 308 medium sized fires from the years 2018-2021, complete with both time series airborne based inference and ground operational estimation of fire extent, and operational mitigation data such as control line construction. As the first large wildfire dataset with mitigation information, Burn Mitigation Dataset (BurnMD) will help advance fire projection modeling, fire risk modeling, and AI generated land management policies. Authors: Marissa Dotter (MITRE Corporation) |
ICLR 2023 |
Remote Control: Debiasing Remote Sensing Predictions for Causal Inference
(Papers Track)
Abstract and authors: (click to expand)Abstract: Understanding and properly estimating the impacts of environmental interventions is of critical importance as we work towards achieving global climate goals. Remote sensing has become an essential tool for evaluating when and where climate policies have positive impacts on factors like greenhouse gas emissions and carbon sequestration. However, when machine learning models trained to predict outcomes using remotely sensed data simply minimize a standard loss function, the predictions that they generate can produce biased estimates in downstream causal inference. If prediction error in the outcome variable is correlated with policy variables or important confounders, as is the case for many widely used remote sensing data sets, estimates of the causal impacts of policies can be biased. In this paper, we demonstrate how this bias can arise, and we propose the use of an adversarial debiasing model (Zhang, Lemoine, and Mitchell 2018) in order to correct the issue when using satellite data to generate machine learning predictions for use in causal inference. We apply this method to a case study of the relationship between roads and tree cover in West Africa, where our results indicate that adversarial debiasing can recover a much more accurate estimate of the parameter of interest compared to when the standard approach is used. Authors: Matthew Gordon (Yale); Megan Ayers (Yale University); Eliana Stone (Yale School of the Environment); Luke C Sanford (Yale School of the Environment) |
ICLR 2023 |
Widespread increases in future wildfire risk to global forest carbon offset projects revealed by explainable AI
(Papers Track)
Abstract and authors: (click to expand)Abstract: Carbon offset programs are critical in the fight against climate change. One emerging threat to the long-term stability and viability of forest carbon offset projects is wildfires, which can release large amounts of carbon and limit the efficacy of associated offsetting credits. However, analysis of wildfire risk to forest carbon projects is challenging because existing models for forecasting long-term fire risk are limited in predictive accuracy. Therefore, we propose an explainable artificial intelligence (XAI) model trained on 7 million global satellite wildfire observations. Validation results suggest substantial potential for high resolution, enhanced accuracy projections of global wildfire risk, and the model outperforms the U.S. National Center for Atmospheric Research's leading fire model. Applied to a collection of 190 global forest carbon projects, we find that fire exposure is projected to increase 55% [37-76%] by 2080 under a mid-range scenario (SSP2-4.5). Our results indicate the large wildfire carbon project damages seen in the past decade are likely to become more frequent as forests become hotter and drier. In response, we hope the model can support wildfire managers, policymakers, and carbon market analysts to preemptively quantify and mitigate long-term permanence risks to forest carbon projects. Authors: Tristan Ballard (Sust Inc); Gopal Erinjippurath (Sust Global); Matthew W Cooper (Sust Global); Chris Lowrie (Sust Global) |
ICLR 2023 |
Understanding forest resilience to drought with Shapley values
(Proposals Track)
Abstract and authors: (click to expand)Abstract: Increases in drought frequency, intensity, and duration due to climate change are threatening forests around the world. Climate-driven tree mortality is associated with devastating ecological and societal consequences, including the loss of carbon sequestration, habitat provisioning, and water filtration services. A spatially fine-grained understanding of the site characteristics making forests more resilient to drought is still lacking. Furthermore, the complexity of drought effects on forests, which can be cumulative and delayed, demands investigation of the most appropriate drought indices. In this study, we aim to gain a better understanding of the temporal and spatial drivers of drought-induced changes in forest vitality using Shapley values, which allow for the relevance of predictors to be quantified locally. A better understanding of the contribution of meteorological and environmental factors to trees’ response to drought can support forest managers aiming to make forests more climate-resilient. Authors: Stenka Vulova (Technische Universität Berlin); Alby Duarte Rocha (Technische Universität Berlin); Akpona Okujeni (Humboldt-Universität zu Berlin); Johannes Vogel (Freie Universität Berlin); Michael Förster (Technische Universität Berlin); Patrick Hostert (Humboldt-Universität zu Berlin); Birgit Kleinschmit (Technische Universität Berlin) |
NeurIPS 2022 |
Aboveground carbon biomass estimate with Physics-informed deep network
(Papers Track)
Abstract and authors: (click to expand)Abstract: The global carbon cycle is a key process to understand how our climate is changing. However, monitoring the dynamics is difficult because a high-resolution robust measurement of key state parameters including the aboveground carbon biomass (AGB) is required. We use deep neural network to generate a wall-to-wall map of AGB within the Continental USA (CONUS) with 30-meter spatial resolution for the year 2021. We combine radar and optical hyperspectral imagery, with a physical climate parameter of solar-induced chlorophyll fluorescence (SIF)-based gross primary productivity (GPP). Validation results show that a masked variation of UNet has the lowest validation RMSE of 37.93 ± 1.36 Mg C/ha, as compared to 52.30 ± 0.03 Mg C/ha for random forest algorithm. Furthermore, models that learn from SIF-based GPP in addition to radar and optical imagery reduce validation RMSE by almost 10% and the standard deviation by 40%. Finally, we apply our model to measure losses in AGB from the recent 2021 Caldor wildfire in California, and validate our analysis with Sentinel-based burn index. Authors: Juan Nathaniel (Columbia University); Levente Klein (IBM Research); Campbell D Watson (IBM Reserch); Gabrielle Nyirjesy (Columbia University); Conrad M Albrecht (IBM Research) |
NeurIPS 2022 |
Scene-to-Patch Earth Observation: Multiple Instance Learning for Land Cover Classification
(Papers Track)
Abstract and authors: (click to expand)Abstract: Land cover classification (LCC), and monitoring how land use changes over time, is an important process in climate change mitigation and adaptation. Existing approaches that use machine learning with Earth observation data for LCC rely on fully-annotated and segmented datasets. Creating these datasets requires a large amount of effort, and a lack of suitable datasets has become an obstacle in scaling the use of LCC. In this study, we propose Scene-to-Patch models: an alternative LCC approach utilising Multiple Instance Learning (MIL) that requires only high-level scene labels. This enables much faster development of new datasets whilst still providing segmentation through patch-level predictions, ultimately increasing the accessibility of using LCC for different scenarios. On the DeepGlobe-LCC dataset, our approach outperforms non-MIL baselines on both scene- and patch-level prediction. This work provides the foundation for expanding the use of LCC in climate change mitigation methods for technology, government, and academia. Authors: Joseph Early (University of Southampton); Ying-Jung C Deweese (Georgia Insititute of Technology); Christine Evers (University of Southampton); Sarvapali Ramchurn (University of Southampton) |
NeurIPS 2022 |
FIRO: A Deep-neural Network for Wildfire Forecast with Interpretable Hidden States
(Papers Track)
Abstract and authors: (click to expand)Abstract: Several wildfire danger systems have emerged from decades of research. One such system is the National Fire-Danger Rating System (NFDRS), which is used widely across the United States and is a key predictor in the Global ECMWF Fire Forecasting (GEFF) model. The NFDRS is composed of over 100 equations relating wildfire risk to weather conditions, climate and land cover characteristics, and fuel. These equations and the corresponding 130+ parameters were developed via field and lab experiments. These parameters, which are fixed in the standard NFDRS and GEFF implementations, may not be the most appropriate for a climate-changing world. In order to adjust the NFDRS parameters to current climate conditions and specific geographical locations, we recast NFDRS in PyTorch to create a new deep learning-based Fire Index Risk Optimizer (FIRO). FIRO predicts the ignition component, or the probability a wildfire would require suppression in the presence of a firebrand, and calibrates the uncertain parameters for a specific region and climate conditions by training on observed fires. Given the rare occurrence of wildfires, we employed the extremal dependency index (EDI) as the loss function. Using ERA5 reanalysis and MODIS burned area data, we trained FIRO models for California, Texas, Italy, and Madagascar. Across these four geographies, the average EDI improvement was 175% above the standard NFDRS implementation Authors: Eduardo R Rodrigues (MSR); Campbell D Watson (IBM Reserch); Bianca Zadrozny (IBM Research); Gabrielle Nyirjesy (Columbia University) |
NeurIPS 2022 |
Identifying Compound Climate Drivers of Forest Mortality with β-VAE
(Papers Track)
Abstract and authors: (click to expand)Abstract: Climate change is expected to lead to higher rates of forest mortality. Forest mortality is a complex phenomenon driven by the interaction of multiple climatic variables at multiple temporal scales, further modulated by the current state of the forest (e.g. age, stem diameter, and leaf area index). Identifying the compound climate drivers of forest mortality would greatly improve understanding and projections of future forest mortality risk. Observation data are, however, limited in accuracy and sample size, particularly in regard to forest state variables and mortality events. In contrast, simulations with state-of-the-art forest models enable the exploration of novel machine learning techniques for associating forest mortality with driving climate conditions. Here we simulate 160,000 years of beech, pine and spruce forest dynamics with the forest model FORMIND. We then apply β-VAE to learn disentangled latent representations of weather conditions and identify those that are most likely to cause high forest mortality. The learned model successfully identifies three characteristic climate representations that can be interpreted as different compound drivers of forest mortality. Authors: Mohit Anand (Helmholtz Centre for Environmental Research - UFZ); Lily-belle Sweet (Helmholtz Centre for Environmental Research - UFZ); Gustau Camps-Valls (Universitat de València); Jakob Zscheischler (Helmholtz Centre for Environmental Research - UFZ) |
NeurIPS 2022 |
Bayesian State-Space SCM for Deforestation Baseline Estimation for Forest Carbon Credit
(Papers Track)
Best Paper: Pathway to Impact
Abstract and authors: (click to expand)Abstract: In forest carbon credit, the concept of dynamic (or ex-post) baseline has been discussed to overcome the criticism of junk carbon credit, while an ex-ante baseline is still necessary in terms of project finance and risk assessment. We propose a Bayesian state-space SCM, which integrates both ex-ante and ex-post baseline estimation in a time-series causal inference framework. We apply the proposed model to a REDD+ project in Brazil, and show that it might have had a small, positive effect but had been over-credited and that the 90% predictive interval of the ex-ante baseline included the ex-post baseline, implying our ex-ante estimation can work effectively. Authors: Keisuke Takahata (sustainacraft, Inc.); Hiroshi Suetsugu (sustainacraft, Inc.); Keiichi Fukaya (National Institute for Environmental Studies); Shinichiro Shirota (Hitotsubashi University) |
NeurIPS 2022 |
Towards Global Crop Maps with Transfer Learning
(Papers Track)
Abstract and authors: (click to expand)Abstract: The continuous increase in global population and the impact of climate change on crop production are expected to affect the food sector significantly. In this context, there is need for timely, large-scale and precise mapping of crops for evidence-based decision making. A key enabler towards this direction are new satellite missions that freely offer big remote sensing data of high spatio-temporal resolution and global coverage. During the previous decade and because of this surge of big Earth observations, deep learning methods have dominated the remote sensing and crop mapping literature. Nevertheless, deep learning models require large amounts of annotated data that are scarce and hard-to-acquire. To address this problem, transfer learning methods can be used to exploit available annotations and enable crop mapping for other regions, crop types and years of inspection. In this work, we have developed and trained a deep learning model for paddy rice detection in South Korea using Sentinel-1 VH time-series. We then fine-tune the model for i) paddy rice detection in France and Spain and ii) barley detection in the Netherlands. Additionally, we propose a modification in the pre-trained weights in order to incorporate extra input features (Sentinel-1 VV). Our approach shows excellent performance when transferring in different areas for the same crop type and rather promising results when transferring in a different area and crop type. Authors: Hyun-Woo Jo (Korea University); Alkiviadis Marios Koukos (National Observatory of Athens); Vasileios Sitokonstantinou (National Observatory of Athens); Woo-Kyun Lee (Korea University); Charalampos Kontoes (National Observatory of Athens) |
NeurIPS 2022 |
Accessible Large-Scale Plant Pathology Recognition
(Papers Track)
Abstract and authors: (click to expand)Abstract: Plant diseases are costly and threaten agricultural production and food security worldwide. Climate change is increasing the frequency and severity of plant diseases and pests. Therefore, detection and early remediation can have a significant impact, especially in developing countries. However, AI solutions are yet far from being in production. The current process for plant disease diagnostic consists of manual identification and scoring by humans, which is time-consuming, low-supply, and expensive. Although computer vision models have shown promise for efficient and automated plant disease identification, there are limitations for real-world applications: a notable variation in visual symptoms of a single disease, different light and weather conditions, and the complexity of the models. In this work, we study the performance of efficient classification models and training "tricks" to solve this problem. Our analysis represents a plausible solution for these ecological disasters and might help to assist producers worldwide. More information available at: https://github.com/mv-lab/mlplants Authors: Marcos V. Conde (University of Würzburg); Dmitry Gordeev (H2O.ai) |
NeurIPS 2022 |
ForestBench: Equitable Benchmarks for Monitoring, Reporting, and Verification of Nature-Based Solutions with Machine Learning
(Proposals Track)
Abstract and authors: (click to expand)Abstract: Restoring ecosystems and reducing deforestation are necessary tools to mitigate the anthropogenic climate crisis. Current measurements of forest carbon stock can be inaccurate, in particular for underrepresented and small-scale forests in the Global South, hindering transparency and accountability in the Monitoring, Reporting, and Verification (MRV) of these ecosystems. There is thus need for high quality datasets to properly validate ML-based solutions. To this end, we present ForestBench, which aims to collect and curate geographically-balanced gold-standard datasets of small-scale forest plots in the Global South, by collecting ground-level measurements and visual drone imagery of individual trees. These equitable validation datasets for ML-based MRV of nature-based solutions shall enable assessing the progress of ML models for estimating above-ground biomass, ground cover, and tree species diversity. Authors: Lucas Czech (Carnegie Institution for Science); Björn Lütjens (MIT); David Dao (ETH Zurich) |
NeurIPS 2022 |
Automating the creation of LULC datasets for semantic segmentation
(Tutorials Track)
Abstract and authors: (click to expand)Abstract: High resolution and accurate Land Use and Land Cover mapping (LULC) datasets are increasingly important and can be widely used in monitoring climate change impacts in agriculture, deforestation, and the carbon cycle. These datasets represent physical classifications of land types and spatial information over the surface of the Earth. These LULC datasets can be leveraged in a plethora of research topics and industries to mitigate and adapt to environmental changes. High resolution urban mappings can be used to better monitor and estimate building albedo and urban heat island impacts, and accurate representation of forests and vegetation can even be leveraged to better monitor the carbon cycle and climate change through improved land surface modelling. The advent of machine learning (ML) based CV techniques over the past decade provides a viable option to automate LULC mapping. One impediment to this has been the lack of large ML datasets. Large vector datasets for LULC are available, but can’t be used directly by ML practitioners due to a knowledge gap in transforming the input into a dataset of paired satellite images and segmentation masks. We demonstrate a novel end-to-end pipeline for LULC dataset creation that takes vector land cover data and provides a training-ready dataset. We will use Sentinel-2 satellite imagery and the European Urban Atlas LULC data. The pipeline manages everything from downloading satellite data, to creating and storing encoded segmentation masks and automating data checks. We then use the resulting dataset to train a semantic segmentation model. The aim of the pipeline is to provide a way for users to create their own custom datasets using various combinations of multispectral satellite and vector data. In addition to presenting the pipeline, we aim to provide an introduction to multispectral imagery, geospatial data and some of the challenges in using it for ML. Authors: Sambhav S Rohatgi (Spacesense.ai); Anthony Mucia (Spacesense.ai) |
NeurIPS 2021 |
A hybrid convolutional neural network/active contour approach to segmenting dead trees in aerial imagery
(Papers Track)
Abstract and authors: (click to expand)Abstract: The stability and ability of an ecosystem to withstand climate change is directly linked to its biodiversity. Dead trees are a key indicator of overall forest health, housing one-third of forest ecosystem biodiversity, and constitute 8% of the global carbon stocks. They are decomposed by several natural factors, e.g. climate, insects and fungi. Accurate detection and modeling of dead wood mass is paramount to understanding forest ecology, the carbon cycle and decomposers. We present a novel method to construct precise shape contours of dead trees from aerial photographs by combining established convolutional neural networks with a novel active contour model in an energy minimization framework. Our approach yields superior performance accuracy over state-of-the-art in terms of precision, recall, and intersection over union of detected dead trees. This improved performance is essential to meet emerging challenges caused by climate change (and other man-made perturbations to the systems), particularly to monitor and estimate carbon stock decay rates, monitor forest health and biodiversity, and the overall effects of dead wood on and from climate change. Authors: Jacquelyn Shelton (Hong Kong Polytechnic University); Przemyslaw Polewski (TomTom Location Technology Germany GmbH); Wei Yao (The Hong Kong Polytechnic University); Marco Heurich (Bavarian Forest National Park) |
NeurIPS 2021 |
A Deep Learning application towards transparent communication for Payment for Forest Environmental Services (PES)
(Proposals Track)
Abstract and authors: (click to expand)Abstract: Deforestation accounts for more than 20% of global emission. Payments for Environmental Services (PES) is seen by both policy makers and practitioners as an effective market-based instrument to provide financial incentives for forest owners, particularly poor and indigenous households in developing countries. It is a critical instrument to protect forests, and ultimately to mitigate climate change and reduce emission from deforestation. However, previous studies have pointed out a key challenge for PES is to ensure transparent payment to local people, due to i) weak monitoring and evaluation and ii) indigenous inaccessibility to e-banking and complying with procedural and administrative paper works to receive payments. Specifically, the amount and the complexity of forms along with the language barriers is a key issue; and most transactions need several intermediaries and transaction costs which reduce the payments reaching landowners. To address these issues, we propose a communication platform that links across the stakeholders and processes. Our proposal will utilize Machine Learning techniques to lower the language barrier and provide technology solutions to help indigenous people to access payments. This would also help improve the effectiveness and transparency of PES schemes. Specifically, we propose the use of Natural Language Processing techniques in providing a speech-to-text and auto translation capability, and the use of Graph Neural Network to provide link predictions of transaction types, volumes and values. The pathway to impact will be forest protection and local livelihood through providing financial incentives, and subsequently contribution to more carbon sequestration and storage – a key issue in climate change mitigation. Authors: Lan HOANG (IBM Research); Thuy Thu Phan (Center for International Forestry Research (CIFOR)) |
ICML 2021 |
Urban Tree Species Classification Using Aerial Imagery
(Papers Track)
Abstract and authors: (click to expand)Abstract: Urban trees help regulate temperature, reduce energy consumption, improve urban air quality, reduce wind speeds, and mitigating the urban heat island effect. Urban trees also play a key role in climate change mitigation and global warming by capturing and storing atmospheric carbon-dioxide which is the largest contributor to greenhouse gases. Automated tree detection and species classification using aerial imagery can be a powerful tool for sustainable forest and urban tree management. Hence, This study first offers a pipeline for generating labelled dataset of urban trees using Google Map's aerial images and then investigates how state of the art deep Convolutional Neural Network models such as VGG and ResNet handle the classification problem of urban tree aerial images under different parameters. Experimental results show our best model achieves an average accuracy of 60% over 6 tree species. Authors: Emily Waters (Anglia Ruskin University); Mahdi Maktabdar Oghaz (Anglia Ruskin University); Lakshmi Babu Saheer (Anglia Ruskin University) |
ICML 2021 |
ForestViT: A Vision Transformer Network for Convolution-free Multi-label Image Classification in Deforestation Analysis
(Papers Track)
Abstract and authors: (click to expand)Abstract: Understanding the dynamics of deforestation as well as land uses of neighboring areas is of vital importance for the design and development of appropriate forest conservation and management policies. In this paper, we approach deforestation as a multi-label classification problem in an endeavor to capture the various relevant land uses from satellite images. To this end, we propose a multi-label vision transformer model, ForestViT, which leverages the benefits of self-attention mechanism, obviating any convolution operations involved in commonly used deep learning models utilized for deforestation detection. Authors: Maria Kaselimi (National Technical University of Athens); Athanasios Voulodimos (University of West Attica); Ioannis Daskalopoulos (University of West Attica); Nikolaos Doulamis (National Technical University of Athens); Anastasios Doulamis (Technical University of Crete) |
ICML 2021 |
Quantification of Carbon Sequestration in Urban Forests
(Papers Track)
Abstract and authors: (click to expand)Abstract: Vegetation, trees in particular, sequester carbon by absorbing carbon dioxide from the atmosphere, however, the lack of efficient quantification methods of carbon stored in trees renders it difficult to track the process. Here we present an approach to estimate the carbon storage in trees based on fusing multispectral aerial imagery and LiDAR data to identify tree coverage, geometric shape, and tree species, which are crucial attributes in carbon storage quantification. We demonstrate that tree species information and their three-dimensional geometric shapes can be estimated from remote imagery in order to calculate the tree's biomass. Specifically, for Manhattan, New York City, we estimate a total of 52,000 tons of carbon sequestered in trees. Authors: Levente Klein (IBM Research); Wang Zhou (IBM Research); Conrad M Albrecht (IBM Research) |
NeurIPS 2020 |
Spatio-Temporal Learning for Feature Extraction inTime-Series Images
(Papers Track)
Abstract and authors: (click to expand)Abstract: Earth observation programs have provided highly useful information in global climate change research over the past few decades and greatly promoted its development, especially through providing biological, physical, and chemical parameters on a global scale. Programs such as Landsat, Sentinel, SPOT, and Pleiades can be used to acquire huge volume of medium to high resolution images every day. In this work, we organize these data in time series and we exploit both temporal and spatial information they provide to generate accurate and up-to-date land cover maps that can be used to monitor vulnerable areas threatened by the ongoing climatic and anthropogenic global changes. For this purpose, we combine a fully convolutional neural network with a convolutional long short-term memory. Implementation details of the proposed spatio-temporal neural network architecture are described. Examples are provided for the monitoring of roads and mangrove forests on the West African coast. Authors: Gael Kamdem De Teyou (Huawei) |
NeurIPS 2020 |
Predicting Landsat Reflectance with Deep Generative Fusion
(Papers Track)
Abstract and authors: (click to expand)Abstract: Public satellite missions are commonly bound to a trade-off between spatial and temporal resolution as no single sensor provides fine-grained acquisitions with frequent coverage. This hinders their potential to assist vegetation monitoring or humanitarian actions, which require detecting rapid and detailed terrestrial surface changes. In this work, we probe the potential of deep generative models to produce high-resolution optical imagery by fusing products with different spatial and temporal characteristics. We introduce a dataset of co-registered Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat surface reflectance time series and demonstrate the ability of our generative model to blend coarse daily reflectance information into low-paced finer acquisitions. We benchmark our proposed model against state-of-the-art reflectance fusion algorithms. Authors: Shahine Bouabid (University of Oxford); Jevgenij Gamper (Cervest Ltd.) |
NeurIPS 2020 |
Estimating Forest Ground Vegetation Cover From Nadir Photographs Using Deep Convolutional Neural Networks
(Papers Track)
Abstract and authors: (click to expand)Abstract: Forest fires, such as those on the US west coast in September 2020, are an important factor in climate change. Wildfire modeling and mitigation require mapping vegetation ground cover over large plots of land. The current forestry practice is to send out human ground crews to collect photos of the forest floor at precisely determined locations, then manually calculate the percent cover of ground fuel types. In this work, we propose automating this process using a supervised learning-based deep convolutional neural network to perform image segmentation. Experimental results on a real dataset show this approach delivers very promising performance. Authors: Pranoy Panda (Indian Institute of Technology, Hyderabad); Martin Barczyk (University of Alberta); Jen Beverly (University of Alberta) |
NeurIPS 2020 |
Monitoring the Impact of Wildfires on Tree Species with Deep Learning
(Papers Track)
Abstract and authors: (click to expand)Abstract: One of the impacts of climate change is the difficulty of tree regrowth after wildfires over areas that traditionally were covered by certain tree species. Here a deep learning model is customized to classify land covers from four-band aerial imagery before and after wildfires to study the prolonged consequences of wildfires on tree species. The tree species labels are generated from manually delineated maps for five land cover classes: Conifer, Hardwood, Shrub, ReforestedTree, and Barren land. With an accuracy of 92% on the test split, the model is applied to three wildfires on data from 2009 to 2018. The model accurately delineates areas damaged by wildfires, changes in tree species, and regrowth in burned areas. The result shows clear evidence of wildfires impacting the local ecosystem and the outlined approach can help monitor reforested areas, observe changes in forest composition, and track wildfire impact on tree species. Authors: Wang Zhou (IBM Research); Levente Klein (IBM Research) |
NeurIPS 2020 |
ForestNet: Classifying Drivers of Deforestation in Indonesia using Deep Learning on Satellite Imagery
(Papers Track)
Abstract and authors: (click to expand)Abstract: Characterizing the processes leading to deforestation is critical to the development and implementation of targeted forest conservation and management policies. In this work, we develop a deep learning model called ForestNet to classify the drivers of primary forest loss in Indonesia, a country with one of the highest deforestation rates in the world. Using satellite imagery, ForestNet identifies the direct drivers of deforestation in forest loss patches of any size. We curate a dataset of Landsat 8 satellite images of known forest loss events paired with driver annotations from expert interpreters. We use the dataset to train and validate the models and demonstrate that ForestNet substantially outperforms other standard driver classification approaches. In order to support future research on automated approaches to deforestation driver classification, the dataset curated in this study is publicly available at https://stanfordmlgroup.github.io/projects/forestnet . Authors: Jeremy A Irvin (Stanford); Hao Sheng (Stanford University); Neel Ramachandran (Stanford University); Sonja Johnson-Yu (Stanford University); Sharon Zhou (Stanford University); Kyle Story (Descartes Labs); Rose Rustowicz (Descartes Labs); Cooper Elsworth (Descartes Labs); Kemen Austin (RTI International); Andrew Ng (Stanford University) |
NeurIPS 2020 |
Mangrove Ecosystem Detection using Mixed-Resolution Imagery with a Hybrid-Convolutional Neural Network
(Papers Track)
Abstract and authors: (click to expand)Abstract: Mangrove forests are rich in biodiversity and are a large contributor to carbon sequestration critical in the fight against climate change. However, they are currently under threat from anthropogenic activities, so monitoring their health, extent, and productivity is vital to our ability to protect these important ecosystems. Traditionally, lower resolution satellite imagery or high resolution unmanned air vehicle (UAV) imagery has been used independently to monitor mangrove extent, both offering helpful features to predict mangrove extent. To take advantage of both of these data sources, we propose the use of a hybrid neural network, which combines a Convolutional Neural Network (CNN) feature extractor with a Multilayer-Perceptron (MLP), to accurately detect mangrove areas using both medium resolution satellite and high resolution drone imagery. We present a comparison of our novel Hybrid CNN with algorithms previously applied to mangrove image classification on a data set we collected of dwarf mangroves from consumer UAVs in Baja California Sur, Mexico, and show a 95\% intersection over union (IOU) score for mangrove image classification, outperforming all our baselines. Authors: Dillon Hicks (Engineers for Exploration); Ryan Kastner (University of California San Diego); Curt Schurgers (University of California San Diego); Astrid Hsu (University of California San Diego); Octavio Aburto (University of California San Diego) |
NeurIPS 2020 |
Counting Cows: Tracking Illegal Cattle Ranching From High-Resolution Satellite Imagery
(Papers Track)
Abstract and authors: (click to expand)Abstract: Cattle farming is responsible for 8.8\% of greenhouse gas emissions worldwide. In addition to the methane emitted due to their digestive process, the growing need for grazing areas is an important driver of deforestation. While some regulations are in place for preserving the Amazon against deforestation, these are being flouted in various ways. Hence the need to scale and automate the monitoring of cattle ranching activities. Through a partnership with \textit{Anonymous under review}, we explore the feasibility of tracking and counting cattle at the continental scale from satellite imagery. With a license from Maxar Technologies, we obtained satellite imagery of the Amazon at 40cm resolution, and compiled a dataset of 903 images containing a total of 28498 cattle. Our experiments show promising results and highlight important directions for the next steps on both counting algorithms and the data collection processes for solving such challenges. Authors: Issam Hadj Laradji (Element AI); Pau Rodriguez (Element AI); Alfredo Kalaitzis (University of Oxford); David Vazquez (Element AI); Ross Young (Element AI); Ed Davey (Global Witness); Alexandre Lacoste (Element AI) |
NeurIPS 2020 |
Satellite imagery analysis for Land Use, Land Use Change and Forestry: A pilot study in Kigali, Rwanda
(Papers Track)
Abstract and authors: (click to expand)Abstract: Estimating greenhouse gases from the Agriculture, Forestry and Other land Use (AFOLU) sector is very challenging partly due to the unavailability of data (particularly for land use and land use change sectors) and inadequate experts to analyze this data in case it is available. We used Collect Earth together with Machine Learning techniques to be able to predict and classify all the land use types based on some few points collected using Collect Earth. We investigated the adoption of this tool and technology in Rwanda to help its national and sub-national inventories. The use of Collect Earth and the Machine Learning (ML) implementation will help Rwanda monitor and predict its Land Use, Land Use Change, and Forestry in a cost-effective manner whiles enhancing the quality of reports submitted to national and international bodies whiles introducing a new approach. Among the classification algorithms we tested, we had an overall classification accuracy of 97% using the Classification and Regression Trees (CART) algorithm to to predict the six land Use classes across the country. Authors: Bright Aboh (African Institute for Mathematical Sciences); Alphonse Mutabazi (UN Environment Program) |
NeurIPS 2020 |
EarthNet2021: A novel large-scale dataset and challenge for forecasting localized climate impacts
(Papers Track)
Abstract and authors: (click to expand)Abstract: Climate change is global, yet its concrete impacts can strongly vary between different locations in the same region. Seasonal weather forecasts currently operate at the mesoscale (> 1 km). For more targeted mitigation and adaptation, modelling impacts to < 100 m is needed. Yet, the relationship between driving variables and Earth’s surface at such local scales remains unresolved by current physical models. Large Earth observation datasets now enable us to create machine learning models capable of translating coarse weather information into high-resolution Earth surface forecasts encompassing localized climate impacts. Here, we define high-resolution Earth surface forecasting as video prediction of satellite imagery conditional on mesoscale weather forecasts. Video prediction has been tackled with deep learning models. Developing such models requires analysis-ready datasets. We introduce EarthNet2021, a new, curated dataset containing target spatio-temporal Sentinel 2 satellite imagery at 20 m resolution, matched with high-resolution topography and mesoscale (1.28 km) weather variables. With over 32000 samples it is suitable for training deep neural networks. Comparing multiple Earth surface forecasts is not trivial. Hence, we define the EarthNetScore, a novel ranking criterion for models forecasting Earth surface reflectance. For model intercomparison we frame EarthNet2021 as a challenge with four tracks based on different test sets. These allow evaluation of model validity and robustness as well as model applicability to extreme events and the complete annual vegetation cycle. In addition to forecasting directly observable weather impacts through satellite-derived vegetation indices, capable Earth surface models will enable downstream applications such as crop yield prediction, forest health assessments, coastline management, or biodiversity monitoring. Find data, code, and how to participate at www.earthnet.tech . Authors: Christian Requena-Mesa (Computer Vision Group, Friedrich Schiller University Jena; DLR Institute of Data Science, Jena; Max Planck Institute for Biogeochemistry, Jena); Vitus Benson (Max-Planck-Institute for Biogeochemistry); Jakob Runge (Institute of Data Science, German Aerospace Center (DLR)); Joachim Denzler (Computer Vision Group, Friedrich Schiller University Jena, Germany); Markus Reichstein (Max Planck Institute for Biogeochemistry, Jena; Michael Stifel Center Jena for Data-Driven and Simulation Science, Jena) |
NeurIPS 2020 |
The Peruvian Amazon Forestry Dataset: A Leaf Image Classification Corpus
(Papers Track)
Abstract and authors: (click to expand)Abstract: This paper introduces the Peruvian Amazon Forestry Dataset, which includes 59,441 leaves samples from ten of the most profitable and endangered Amazon timber-tree species. Besides, the proposal includes a background removal algorithm to feed a fine-tuned CNN. We evaluate the quantitative (accuracy metric) and qualitative (visual interpretation) impacts of each stage by ablation experiments. The results show a 96.64 % training accuracy and 96.52 % testing accuracy on the VGG-19 model. Furthermore, the visual interpretation of the model evidences that leaf venations have the highest correlation in the plant recognition task. Authors: Gerson Waldyr Vizcarra Aguilar (San Pablo Catholic University); Danitza Bermejo (Universidad Nacional del Altiplano); Manasses A. Mauricio (Universidad Católica San Pablo); Ricardo Zarate (Instituto de Investigaciones de la Amazonía Peruana); Erwin Dianderas (Instituto de Investigaciones de la Amazonía Peruana) |
NeurIPS 2020 |
Deep Fire Topology: Understanding the role of landscape spatial patterns in wildfire susceptibility
(Papers Track)
Abstract and authors: (click to expand)Abstract: Increasing wildfire activity across the globe has become an urgent issue with enormous ecological and social impacts. While there is evidence that landscape topology affects fire growth, no study has yet reported its potential influence on fire ignition. This study proposes a deep learning framework focused on understanding the impact of different landscape topologies on the ignition of a wildfire and the rationale behind these results. Our model achieves an accuracy of above 90\% in fire occurrence prediction, detection, and classification of risky areas by only exploiting topological pattern information from 17,579 landscapes. This study reveals the strong potential of landscape topology in wildfire occurrence prediction and its implications for similar research. The proposed methodology can be applied to multiple fields/studies to understand and capture the role and impact of different topological features and their interactions. Authors: Cristobal Pais (University of California Berkeley); Alejandro Miranda (University of Chile); Jaime Carrasco (University of Chile); Zuo-Jun Shen (University of California, Berkeley) |
NeurIPS 2020 |
Wildfire Smoke and Air Quality: How Machine Learning Can Guide Forest Management
(Proposals Track)
Abstract and authors: (click to expand)Abstract: Prescribed burns are currently the most effective method of reducing the risk of widespread wildfires, but a largely missing component in forest management is knowing which fuels one can safely burn to minimize exposure to toxic smoke. Here we show how machine learning, such as spectral clustering and manifold learning, can provide interpretable representations and powerful tools for differentiating between smoke types, hence providing forest managers with vital information on effective strategies to reduce climate-induced wildfires while minimizing production of harmful smoke. Authors: Lorenzo Tomaselli (Carnegie Mellon University); Coty Jen (Carnegie Mellon University); Ann Lee (Carnegie Mellon University) |
ICLR 2020 |
A CONTINUAL LEARNING APPROACH FOR LOCAL LEVEL ENVIRONMENTAL MONITORING IN LOW-RESOURCE SETTINGS
(Papers Track)
Abstract and authors: (click to expand)Abstract: An increasingly important dimension in the quest for mitigation and monitoring of environmental change is the role of citizens. The crowd-based monitoring of local level anthropogenic alterations is essential towards measurable changes in different contributing factors to climate change. With the proliferation of mobile technologies here in the African continent, it is useful to have machine learning based models that are deployed on mobile devices and that can learn continually from streams of data over extended time, possibly pertaining to different tasks of interest. In this paper, we demonstrate the localisation of deforestation indicators using lightweight models and extend to incorporate data about wildfires and smoke detection. The idea is to show the need and potential of continual learning approaches towards building robust models to track local environmental alterations. Authors: Arijit Patra (University of Oxford) |
ICLR 2020 |
TrueBranch: Metric Learning-based Verification of Forest Conservation Projects
(Proposals Track)
Best Proposal Award
Abstract and authors: (click to expand)Abstract: International stakeholders increasingly invest in offsetting carbon emissions, for example, via issuing Payments for Ecosystem Services (PES) to forest conservation projects. Issuing trusted payments requires a transparent monitoring, reporting, and verification (MRV) process of the ecosystem services (e.g., carbon stored in forests). The current MRV process, however, is either too expensive (on-ground inspection of forest) or inaccurate (satellite). Recent works propose low-cost and accurate MRV via automatically determining forest carbon from drone imagery, collected by the landowners. The automation of MRV, however, opens up the possibility that landowners report untruthful drone imagery. To be robust against untruthful reporting, we propose TrueBranch, a metric learning-based algorithm that verifies the truthfulness of drone imagery from forest conservation projects. TrueBranch aims to detect untruthfully reported drone imagery by matching it with public satellite imagery. Preliminary results suggest that nominal distance metrics are not sufficient to reliably detect untruthfully reported imagery. TrueBranch leverages a method from metric learning to create a feature embedding in which truthfully and untruthfully collected imagery is easily distinguishable by distance thresholding. Authors: Simona Santamaria (ETH Zurich); David Dao (ETH Zurich); Björn Lütjens (MIT); Ce Zhang (ETH) |
ICLR 2020 |
Using ML to close the vocabulary gap in the context of environment and climate change in Chichewa
(Proposals Track)
Abstract and authors: (click to expand)Abstract: In the west, alienation from nature and deteriorating opportunities to experience it, have led educators to incorporate educational programs in schools, to bring pupils in contact with nature and to enhance their understanding of issues related to the environment and its protection. In Africa, and in Malawi, where most people engage in agriculture, and spend most of their time in the 'outdoors', alienation from nature is happening too, although in different ways. Large portion of the indigenous vocabulary and knowledge remains unknown or is slowly disappearing, and there is a need to build a glossary of terms regarding environment and climate change in the vernacular to improve the dialog regarding climate change and environmental protection.. We believe that ML has a role to play in closing the ‘vocabulary gap’ of terms and concepts regarding the environment and climate change that exists in Chichewa and other Malawian languages by helping to creating a visual dictionary of key terms used to describe the environment and explain the issues involved in climate change and their meaning. Chichewa is a descriptive language, one English term may be translated using several words. Thus, the task is not to detect just literal translations, but also translations by means of ‘descriptions’ and illustrations and thus extract correspondence between terms and definitions and to measure how appropriate a term is to convey the meaning intended. As part of this project, ML can be used to identify ‘loanword patterns’, which may be useful in understanding the transmission of cultural items. Authors: Amelia Taylor (University of Malawi, The Polytechnic) |
NeurIPS 2019 |
Measuring Impact of Climate Change on Tree Species: analysis of JSDM on FIA data
(Papers Track)
Honorable Mention
Abstract and authors: (click to expand)Abstract: One of the first beings affected by changes in the climate are trees, one of our most vital resources. In this study tree species interaction and the response to climate in different ecological environments is observed by applying a joint species distribution model to different ecological domains in the United States. Joint species distribution models are useful to learn inter-species relationships and species response to the environment. The climates’ impact on the tree species is measured through species abundance in an area. We compare the model’s performance across all ecological domains and study the sensitivity of the climate variables. With the prediction of abundances, tree species populations can be predicted in the future and measure the impact of climate change on tree populations. Authors: Hyun Choi (University of Florida); Sergio Marconi (University of Florida); Ali Sadeghian (University of Florida); Ethan White (University of Florida); Daisy Zhe Wang (Univeresity of Florida) |
NeurIPS 2019 |
Machine Learning-based Estimation of Forest Carbon Stocks to increase Transparency of Forest Preservation Efforts
(Proposals Track)
Abstract and authors: (click to expand)Abstract: An increasing amount of companies and cities plan to become CO2-neutral, which requires them to invest in renewable energies and carbon emission offsetting solutions. One of the cheapest carbon offsetting solutions is preventing deforestation in developing nations, a major contributor in global greenhouse gas emissions. However, forest preservation projects historically display an issue of trust and transparency, which drives companies to invest in transparent, but expensive air carbon capture facilities. Preservation projects could conduct accurate forest inventories (tree diameter, species, height etc.) to transparently estimate the biomass and amount of stored carbon. However, current rainforest inventories are too inaccurate, because they are often based on a few expensive ground-based samples and/or low-resolution satellite imagery. LiDAR-based solutions, used in US forests, are accurate, but cost-prohibitive, and hardly-accessible in the Amazon rainforest. We propose accurate and cheap forest inventory analyses through Deep Learning-based processing of drone imagery. The more transparent estimation of stored carbon will create higher transparency towards clients and thereby increase trust and investment into forest preservation projects. Authors: Björn Lütjens (MIT); Lucas Liebenwein (Massachusetts Institute of Technology); Katharina Kramer (Massachusetts Institute of Technology) |
NeurIPS 2019 |
Optimizing trees for carbon sequestration
(Proposals Track)
Abstract and authors: (click to expand)Abstract: In the IPCC models of climate change mitigation, most scenarios ensuring less than 2ºC of warming assume deployment of some form of “negative emissions technology,” alongside dramatic reductions in emissions and other major societal changes. Proposed negative emissions technologies include bioenergy with carbon capture and storage, enhanced weathering of minerals, direct air capture, and afforestation / reforestation. Among these technologies, the use of trees for carbon sequestration through photosynthesis is well established, requires little energy, has comparable sequestration potential, and can be deployed at scale for relatively low cost. The primary constraint on using trees for sequestration is land, which is limited and increasingly subject to competitive demand. Thus, maximizing the capacity and long-term stability of every hectare used for planting would bolster the critical role of trees in a broad negative emissions strategy. Here, we propose to build a new data resource and optimization tool that leverages modern measurements and machine learning to help address this need. Authors: Jeremy Freeman |
ICML 2019 |
GainForest: Scaling Climate Finance for Forest Conservation using Interpretable Machine Learning on Satellite Imagery
(Ideas Track)
Abstract and authors: (click to expand)Abstract: Designing effective REDD+ policies, assessing their GHG impact, and linking them with the corresponding payments, is a resource intensive and complex task. GainForest leverages video prediction with remote sensing to monitor and forecast forest change at high resolution. Furthermore, by viewing payment allocation as a feature selection problem, GainForest can efficiently design payment schemes based on the Shapley value. Authors: David Dao (ETH); Ce Zhang (ETH); Nick Beglinger (Cleantech21); Catherine Cang (UC Berkeley); Reuven Gonzales (OasisLabs); Ming-Da Liu Zhang (ETHZ); Nick Pawlowski (Imperial College London); Clement Fung (University of British Columbia) |