NeurIPS 2020 Workshop
Tackling Climate Change with Machine Learning

About Available Grants Call for Submissions Mentorship Program Organizers FAQ


Many in the ML community wish to take action on climate change, but are unsure of the pathways through which they can have the most impact. This workshop will highlight work that demonstrates that, while no silver bullet, ML can be an invaluable tool both in reducing greenhouse gas emissions and in helping society adapt to the effects of climate change. Climate change is a complex problem, for which action takes many forms - from theoretical advances to deployment of new technology. Many of these actions represent high-impact opportunities for real-world change, and are simultaneously interesting academic research problems.

About NeurIPS

NeurIPS is one of the premier conferences on machine learning, and includes a wide audience of researchers and practitioners in academia, industry, and related fields. It is possible to attend the workshop without either presenting at or attending the main NeurIPS conference. Those interested should register for NeurIPS at starting in September.

About the Workshop

Available Grants

NeurIPS Registration Grants

Although conference fees have been significantly reduced, if cost is still a burden, then please apply for financial assistance here. CCAI will do our best to meet financial assistance needs for the NeurIPS registration fee. The application deadline is November 20th, 2020.

Participants may also apply for registration grants through the main NeurIPS conference. Applications can be submitted here through November 27.

Data Grants

Given the COVID-19 pandemic and the virtual nature of NeurIPS this year, CCAI is offering Data Grants to participants who have limited access to the internet. The application deadline is November 20th, 2020. Please apply here here.

Call for Submissions

We invite submissions of short papers using machine learning to address problems in climate mitigation, adaptation, and science, including but not limited to the following topics:

All machine learning techniques are welcome, from kernel methods to deep learning. Each submission should make clear why the application has (or could have) a pathway to positive impacts regarding climate change. We highly encourage submissions that make their data publicly available. Accepted submissions will be invited to give poster presentations, of which some will be selected for spotlight talks.

The workshop does not publish proceedings, and submissions are non-archival. Submission to this workshop does not preclude future publication. Previously published work may be submitted under certain circumstances (see the FAQ).

All submissions must be through the submission website. Submissions will be reviewed double-blind; do your best to anonymize your submission, and do not include identifying information for authors in the PDF. We encourage, but do not require, use of the NeurIPS style template.

Please see the Tips for Submissions and FAQ, and contact with questions.

Submission Tracks

There are two tracks for submissions. Submissions are limited to 4 pages for the Papers track, and 3 pages for the Proposals track, in PDF format (see examples from ICLR 2020, NeurIPS 2019 and ICML 2019. References do not count towards this total. Supplementary appendices are allowed but will be read at the discretion of the reviewers. All submissions must explain why the proposed work has (or could have) positive impacts regarding climate change.


Work that is in progress, published, and/or deployed

Submissions for the Papers track should describe projects relevant to climate change that involve machine learning. These may include (but are not limited to) academic research; deployed results from startups, industry, public institutions, etc.; and climate-relevant datasets.

Submissions should provide experimental or theoretical validation of the method presented, as well as specifying what gap the method fills. Authors should clearly illustrate a pathway to climate impact, i.e., identify the way in which this work fits into broader efforts to address climate change. Algorithms need not be novel from a machine learning perspective if they are applied in a novel setting. Details of methods need not be revealed if they are proprietary, though transparency is highly encouraged.

Submissions creating novel datasets are welcomed. Datasets should be designed to permit machine learning research (e.g. formatted with clear benchmarks for evaluation). In this case, baseline experimental results on the dataset are preferred, but not required.


Detailed descriptions of ideas for future work

Submissions for the Proposals track should describe detailed ideas for how machine learning can be used to solve climate-relevant problems. While less constrained than the Papers track, Proposals will be subject to a very high standard of review. No results need to be demonstrated, but ideas should be justified as extensively as possible, including motivation for why the problem being solved is important in tackling climate change, discussion of why current methods are inadequate, explanation of the proposed method, and discussion of the pathway to climate impact.

Tips for Submissions

Addressing Impact

Tackling climate change requires translating ideas into action. The guidelines below will help you clearly present the importance of your work to a broad audience, hopefully including relevant decision-makers in industry, government, nonprofits, and other areas.

Submission Mentorship Program

We are hosting a mentorship program to facilitate exchange between potential workshop submitters and experts working in topic areas relevant to the workshop. The goal of this program is to foster cross-disciplinary collaborations and ultimately increase the quality and potential impact of submitted work. See also this video explaining the program.


Mentors are expected to guide mentees during the six weeks of the CCAI mentorship program (Aug 28 - Oct 6) as they prepare submissions for this workshop.

Examples of mentor-mentee interactions may include:

Mentees are expected to initiate contact with their assigned mentor and put in the work and effort necessary to prepare a Paper or Proposal submission by Oct 6. In turn, mentors are expected to commit at least 5 hours over the time period of the mentorship program.

We suggest that after the mentor-mentee matching is made, a first (physical or digital) meeting should take place within the first week (Aug 28 - Sep 4) to discuss the Paper or Proposal and set expectations for the mentorship period. Subsequent interactions can take place either through meetings or via email discussions, following the expectations set during the initial meeting, culminating in a final version of a Paper or Proposal submitted via the CMT portal by Oct 6.


Applications are due by August 25.

Mentee application

Mentees should apply via the mentorship program CMT site:
(After logging in, click the “create new submission” button to start your application.)

In the application, mentees will be asked to answer questions describing their project, their project’s relevance to climate change and machine learning, and the areas on which they are looking for feedback.

Important instructions:

(While the mentorship program is primarily targeted at students and early-career researchers, individuals at any level of seniority are welcome and encouraged to apply for mentorship.)

Mentor application

Mentors should apply via the following Google form:

We suggest that mentor applicants have at least 3 years of research or industry experience in climate change and/or machine learning.

Between August 26-28, selected mentors may be asked to provide additional input in order to facilitate the mentor/mentee matching process. As the mentor/mentee matching period is short, we ask that mentors be responsive during this period.

Mentorship Program FAQ

Q: Am I required to participate in the mentorship program if I want to submit to the workshop?
A: No – while encouraged, participation in the mentorship program is strictly optional.

Q: Are mentors allowed to be authors on the paper for which they provided mentorship?
A: Yes, mentors can be co-authors but not reviewers.

Q: What happens if the mentor/mentee does not fulfill their duties, or if major issues come up?
A: Please email us at and we will do our best to help resolve the situation.

Q: What happens if I apply to be a mentee but do not get paired with a mentor?
A: While we will do our best, we cannot guarantee pairings for everyone. Even if you do not get paired with a mentor, we encourage you to submit a Paper or Proposal to the workshop, and our reviewers will provide you with guidance and feedback on how to improve it.

Q: What happens if my submission does not get accepted to the workshop?
A: While the mentorship program is meant to give students and early-career researchers the opportunity to improve the quality of their work, sometimes submissions will need further polishing and elaboration before being ready for presentation at a CCAI workshop. If this is the case, we invite you to take into account the comments made by the reviewers and to resubmit again to a subsequent CCAI workshop.

Q: I cannot guarantee that I can commit at least 5 hours to the program over the time period. Should I still apply as a mentor?
A: No. While the 5 hour time commitment is a suggestion, we do believe that it is necessary to ensure that all mentees receive the help and guidance they need.

Q: I do not have a background in machine learning; can I still apply to be a mentor/mentee?
A: Yes! We welcome applications from domains that are complementary to machine learning to solve the problems that we are targeting.

Q: What happens if my mentor/mentee wants to continue meeting after the workshop?
A: We welcome and encourage continued interactions after the official mentorship period. That said, neither the mentor nor the mentee should feel obligated to maintain contact.


David Dao* (ETH)
Evan Sherwin* (Stanford)
Priya Donti (CMU)
Lynn Kaack (ETH)
Lauren Kuntz (Gaiascope)
Yumna Yusuf (UK Gov)
David Rolnick (McGill)
Catherine Nakalembe (UMD)
Claire Monteleoni (CU Boulder)
Yoshua Bengio (Mila)
* Denotes co-lead organizers

“How-to” Webinar

View recording here

This workshop aims to attract submissions and participants from a broad range of fields and stakeholder groups across the world to highlight work that uses machine learning to help tackle climate change. Both our main workshop and the supplementary mentorship program aim to facilitate exchange between individuals from many different backgrounds who work at the intersection of climate change and machine learning.

Because this call is so broad, potential submitters likely have many questions. E.g:

To help answer these and other questions, we held a webinar on Thursday, August 20th, at 9am PDT (12pm EDT, 1pm BRT, 6pm CEST, 9:30pm IST, midnight Beijing time), explaining:

Frequently Asked Questions

Q: How can I keep up to date on this kind of stuff?
A: Sign up for our mailing list!

Q: I’m not in machine learning. Can I still submit?
A: Yes, absolutely! We welcome submissions from many fields. Do bear in mind, however, that the majority of attendees of the workshop will have a machine learning background; therefore, other fields should be introduced sufficiently to provide context for the work.

Q: What if my submission is accepted but I can’t attend the workshop?
A: You may ask someone else to present your work in your stead.

Q: Do I need to use LaTeX or the NeurIPS style files?
A: No, although we encourage it.

Q: It’s hard for me to fit my submission on 3 or 4 pages. What should I do?
A: Feel free to include appendices with additional material (these should be part of the same PDF file as the main submission). Do not, however, put essential material in an appendix, as it will be read at the discretion of the reviewers.

Q: What do I do if I need an earlier decision for visa reasons?
A: Given the virtual nature of the conference, we do not anticipate this being an issue. That said, feel free to contact us at and explain your situation and the date by which you require a decision and we will do our best to be accommodating.

Q: Can I send submissions directly by email?
A: No, please use the CMT website to make submissions.

Q: The submission website is asking for my name. Is this a problem for anonymization?
A: You should fill out your name and other info when asked on the submission website; CMT will keep your submission anonymous to reviewers.

Q: Do submissions for the Proposals track need to have experimental validation?
A: No, although some initial experiments or citation of published results would strengthen your submission.

Q: The submission website never sent me a confirmation email. Is this a problem?
A: No, the CMT system does not send automatic confirmation emails after a submission, though the submission should show up on the CMT page once submitted. If in any doubt regarding the submission process, please contact the organizers. Also please avoid making multiple submissions of the same article to CMT.

Q: Can I submit previously published work to this workshop?
A: Yes, though under limited circumstances. In particular, work that has previously been published at non-machine learning venues may be eligible for submission; however, work that has been published in conferences on machine learning or related fields is likely not eligible. (As stated by the NeurIPS workshop guidelines, “Workshops are not a venue for work that has been previously published in other conferences on machine learning or related fields. Work that is presented at the main NeurIPS conference should not appear in a workshop, including as part of an invited talk.”) If your work was previously accepted to a Climate Change AI workshop, this work must have changed or matured substantively to be eligible for resubmission. Please contact with any questions.

Q: Can I submit work to this workshop if I am also submitting to another NeurIPS 2020 workshop?
A: Yes. We cannot, however, guarantee that you will not be expected to present the material at a time that conflicts with the other workshop.